Wolf Maximilian, Lungerich Dominik, Bauroth Stefan, Popp Maximilian, Platzer Benedikt, Clark Timothy, Anderson Harry L, Jux Norbert, Guldi Dirk M
Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Egerlandstraße 3 91058 Erlangen Germany
Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany.
Chem Sci. 2020 Jun 17;11(27):7123-7132. doi: 10.1039/d0sc02028a.
Here, we present a novel butadiyne-linked HBC-ethynyl-porphyrin dimer, which exhibits in the ground state strong absorption cross sections throughout the UV and visible ranges of the solar spectrum. In short, a unidirectional flow of excited state energy from the HBC termini to the (metallo)porphyrin focal points enables concentrating light at the latter. Control over excitonic interactions within, for example, the electron-donating porphyrin dimers was realized by complexation of bidentate ligands to set up panchromatic absorption that extends all the way into the near-infrared range. The bidentate binding motif was then exploited to create a supramolecular electron donor-acceptor assembly based on a HBC-ethynyl-porphyrin dimer and an electron accepting bis(aminoalkyl)-substituted fullerene. Of great relevance is the fact that charge separation from the photoexcited HBC-ethynyl-porphyrin dimer to the bis(aminoalkyl)-substituted fullerene is activated not only upon photoexciting the HBCs in the UV as well as the (metallo)porphyrins in the visible but also in the NIR. Implicit is the synergetic interplay of energy and charge transfer in a photosynthetic mimicking manner. The dimer and bis-HBC-ethynyl-porphyrin monomers, which serve as references, were probed by means of steady-state as well as time-resolved optical spectroscopies, including global target analyses of the time-resolved transient absorption data.
在此,我们展示了一种新型的丁二炔连接的HBC - 乙炔基 - 卟啉二聚体,其在基态下在太阳光谱的紫外和可见光范围内均表现出很强的吸收截面。简而言之,激发态能量从HBC末端到(金属)卟啉焦点的单向流动使得光能够在后者处聚集。通过二齿配体的络合实现了对例如供电子卟啉二聚体内激子相互作用的控制,从而建立了一直延伸到近红外范围的全色吸收。然后利用二齿结合基序创建了基于HBC - 乙炔基 - 卟啉二聚体和电子受体双(氨基烷基)取代富勒烯的超分子电子供体 - 受体组装体。一个非常重要的事实是,不仅在紫外光激发HBC以及可见光激发(金属)卟啉时,而且在近红外光激发时,从光激发的HBC - 乙炔基 - 卟啉二聚体到双(氨基烷基)取代富勒烯的电荷分离都会被激活。这暗示了以光合模拟方式进行的能量和电荷转移的协同相互作用。作为参考的二聚体和双HBC - 乙炔基 - 卟啉单体通过稳态以及时间分辨光谱进行了探测,包括对时间分辨瞬态吸收数据的全局目标分析。