Suppr超能文献

基于结构的胰高血糖素突变体设计,抑制纤维形成。

Structurally Based Design of Glucagon Mutants That Inhibit Fibril Formation.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

出版信息

Biochemistry. 2021 Jun 29;60(25):2033-2043. doi: 10.1021/acs.biochem.1c00214. Epub 2021 Jun 14.

Abstract

The peptide hormone glucagon is prescribed as a pharmaceutical compound to treat diabetic hypoglycemia. However, at the acidic pH where it is highly soluble, glucagon rapidly aggregates into inactive and cytotoxic amyloid fibrils. The recently determined high-resolution structure of these fibrils revealed various stabilizing molecular interactions. On the basis of this structure, we have now designed four arginine mutants of glucagon that resist fibrillization at pharmaceutical concentrations for weeks. An S2R, T29R double mutant and a T29R single mutant remove a hydrogen-bonding interaction in the wild-type fibril, whereas a Y13R, A19R double mutant and a Y13R mutant remove a cation-π interaction. H solution nuclear magnetic resonance spectra and ultraviolet absorbance data indicate that these mutants remain soluble in pH 2 buffer under quiescent conditions at concentrations of ≤4 mg/mL for weeks. Under stressed conditions with high salt concentrations and agitation, these mutants fibrillize significantly more slowly than the wild type. The S2R, T29R mutant and the T29R mutant exhibit a mixture of random coil and α-helical conformations, while the Y13R mutant is completely random coil. The mutation sites are chosen to be uninvolved in strong interactions with the glucagon receptor in the active structure of the peptide. Therefore, these arginine mutants of glucagon are promising alternative compounds for treating hypoglycemia.

摘要

肽激素胰高血糖素被开处方作为一种药物化合物来治疗糖尿病性低血糖。然而,在其高度溶解的酸性 pH 值下,胰高血糖素会迅速聚集形成无活性和细胞毒性的淀粉样原纤维。这些原纤维的最近确定的高分辨率结构揭示了各种稳定的分子相互作用。基于该结构,我们现在已经设计了四种抵抗在药物浓度下数周形成原纤维的胰高血糖素精氨酸突变体。S2R、T29R 双突变体和 T29R 单突变体去除了野生型原纤维中的氢键相互作用,而 Y13R、A19R 双突变体和 Y13R 突变体去除了阳离子-π 相互作用。H 溶液核磁共振谱和紫外吸收数据表明,这些突变体在 pH 2 缓冲液中在≤4mg/mL 的浓度下在静止条件下数周保持可溶。在高盐浓度和搅拌的应激条件下,这些突变体的原纤维形成速度明显比野生型慢。S2R、T29R 突变体和 T29R 突变体表现出无规卷曲和α-螺旋构象的混合物,而 Y13R 突变体完全是无规卷曲。突变位点选择不参与与肽的活性结构中的胰高血糖素受体的强相互作用。因此,这些胰高血糖素的精氨酸突变体是治疗低血糖症的有前途的替代化合物。

相似文献

1
Structurally Based Design of Glucagon Mutants That Inhibit Fibril Formation.
Biochemistry. 2021 Jun 29;60(25):2033-2043. doi: 10.1021/acs.biochem.1c00214. Epub 2021 Jun 14.
2
The peptide hormone glucagon forms amyloid fibrils with two coexisting β-strand conformations.
Nat Struct Mol Biol. 2019 Jul;26(7):592-598. doi: 10.1038/s41594-019-0238-6. Epub 2019 Jun 24.
3
Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
J Mol Biol. 2010 Apr 9;397(4):932-46. doi: 10.1016/j.jmb.2010.02.012. Epub 2010 Feb 12.
4
Intra- and Intersubunit Ion-Pair Interactions Determine the Ability of Apolipoprotein C-II Mutants To Form Hybrid Amyloid Fibrils.
Biochemistry. 2017 Mar 28;56(12):1757-1767. doi: 10.1021/acs.biochem.6b01146. Epub 2017 Mar 15.
5
N- and C-terminal hydrophobic patches are involved in fibrillation of glucagon.
Biochemistry. 2006 Dec 5;45(48):14503-12. doi: 10.1021/bi061228n.
6
Glucagon amyloid-like fibril morphology is selected via morphology-dependent growth inhibition.
Biochemistry. 2007 Jun 19;46(24):7314-24. doi: 10.1021/bi6025374. Epub 2007 May 25.
8
The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting.
J Mol Biol. 2006 Jan 20;355(3):501-23. doi: 10.1016/j.jmb.2005.09.100. Epub 2005 Nov 9.
9
Heparin and Methionine Oxidation Promote the Formation of Apolipoprotein A-I Amyloid Comprising α-Helical and β-Sheet Structures.
Biochemistry. 2017 Mar 21;56(11):1632-1644. doi: 10.1021/acs.biochem.6b01120. Epub 2017 Mar 13.
10
P and C solid-state NMR analysis of morphological changes of phospholipid bilayers containing glucagon during fibril formation of glucagon under neutral condition.
Biochim Biophys Acta Biomembr. 2020 Jul 1;1862(7):183290. doi: 10.1016/j.bbamem.2020.183290. Epub 2020 Mar 25.

本文引用的文献

1
Structural Refinement of Glucagon for Therapeutic Use.
J Med Chem. 2020 Apr 9;63(7):3447-3460. doi: 10.1021/acs.jmedchem.9b01493. Epub 2019 Dec 18.
2
Nasal Glucagon Approved for Severe Hypoglycemia.
JAMA. 2019 Sep 3;322(9):807. doi: 10.1001/jama.2019.12938.
3
The peptide hormone glucagon forms amyloid fibrils with two coexisting β-strand conformations.
Nat Struct Mol Biol. 2019 Jul;26(7):592-598. doi: 10.1038/s41594-019-0238-6. Epub 2019 Jun 24.
4
Insights from the WHO and National Lists of Essential Medicines: Focus on Pediatric Diabetes Care in Africa.
Horm Res Paediatr. 2018;90(2):82-92. doi: 10.1159/000490467. Epub 2018 Jul 26.
5
Type 1 diabetes.
Lancet. 2018 Jun 16;391(10138):2449-2462. doi: 10.1016/S0140-6736(18)31320-5.
6
Structure of the glucagon receptor in complex with a glucagon analogue.
Nature. 2018 Jan 3;553(7686):106-110. doi: 10.1038/nature25153.
7
The New Biology and Pharmacology of Glucagon.
Physiol Rev. 2017 Apr;97(2):721-766. doi: 10.1152/physrev.00025.2016.
8
Native Design of Soluble, Aggregation-Resistant Bioactive Peptides: Chemical Evolution of Human Glucagon.
ACS Chem Biol. 2016 Dec 16;11(12):3412-3420. doi: 10.1021/acschembio.6b00923. Epub 2016 Nov 8.
9
Type 2 diabetes mellitus.
Nat Rev Dis Primers. 2015 Jul 23;1:15019. doi: 10.1038/nrdp.2015.19.
10
Pancreatic regulation of glucose homeostasis.
Exp Mol Med. 2016 Mar 11;48(3):e219. doi: 10.1038/emm.2016.6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验