Suppr超能文献

分层动态剪枝超网的单步神经架构搜索。

One-Shot Neural Architecture Search by Dynamically Pruning Supernet in Hierarchical Order.

机构信息

College of Computer Science, Sichuan University, Section 4, Southern 1st Ring Rd, Chengdu, Sichuan 610065, P. R. China.

出版信息

Int J Neural Syst. 2021 Jul;31(7):2150029. doi: 10.1142/S0129065721500295. Epub 2021 Jun 14.

Abstract

Neural Architecture Search (NAS), which aims at automatically designing neural architectures, recently draw a growing research interest. Different from conventional NAS methods, in which a large number of neural architectures need to be trained for evaluation, the one-shot NAS methods only have to train one supernet which synthesizes all the possible candidate architectures. As a result, the search efficiency could be significantly improved by sharing the supernet's weights during the candidate architectures' evaluation. This strategy could greatly speed up the search process but suffer a challenge that the evaluation based on sharing weights is not predictive enough. Recently, pruning the supernet during the search has been proven to be an efficient way to alleviate this problem. However, the pruning direction in complex-structured search space remains unexplored. In this paper, we revisited the role of path dropout strategy, which drops the neural operations instead of the neurons, in supernet training, and several interesting characters of the supernet trained with dropout are found. Based on the observations, a Hierarchically-Ordered Pruning Neural Architecture Search (HOPNAS) algorithm is proposed by dynamically pruning the supernet with a proper pruning direction. Experimental results indicate that our method is competitive with state-of-the-art approaches on CIFAR10 and ImageNet.

摘要

神经架构搜索 (NAS) 旨在自动设计神经网络架构,最近引起了越来越多的研究兴趣。与传统的 NAS 方法不同,传统的 NAS 方法需要训练大量的神经网络架构进行评估,而单次 NAS 方法只需要训练一个超级网络,该网络综合了所有可能的候选架构。因此,通过在候选架构评估期间共享超级网络的权重,可以显著提高搜索效率。这种策略可以大大加快搜索过程,但面临一个挑战,即基于共享权重的评估不够准确。最近,已经证明在搜索过程中剪枝超级网络是缓解这个问题的有效方法。然而,在复杂结构的搜索空间中,剪枝的方向仍然没有得到探索。在本文中,我们重新审视了路径丢弃策略在超级网络训练中的作用,该策略丢弃的是神经操作而不是神经元,并发现了在使用丢弃策略训练的超级网络中几个有趣的特性。基于这些观察,我们提出了一种层次有序剪枝神经架构搜索(HOPNAS)算法,通过使用适当的剪枝方向动态剪枝超级网络。实验结果表明,我们的方法在 CIFAR10 和 ImageNet 上与最先进的方法具有竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验