Momoh Abdulfatai Atte, Bala Yusuf, Washachi Dekera Jacob, Déthié Dione
Department of Mathematics, Modibbo Adama University of Technology, Yola, Nigeria.
Cheikh Anta Diop University, Dakar, Senegal.
Adv Differ Equ. 2021;2021(1):285. doi: 10.1186/s13662-021-03432-7. Epub 2021 Jun 11.
In this study, we develop a nonlinear ordinary differential equation to study the dynamics of syphilis transmission incorporating controls, namely prevention and treatment of the infected males and females. We obtain syphilis-free equilibrium (SFE) and syphilis-present equilibrium (SPE). We obtain the basic reproduction number, which can be used to control the transmission of the disease, and thus establish the conditions for local and global stability of the syphilis-free equilibrium. The stability results show that the model is locally asymptotically stable if the Routh-Hurwitz criteria are satisfied and globally asymptotically stable. The bifurcation analysis result reveals that the model exhibits backward bifurcation. We adopted Pontryagin's maximum principle to determine the optimality system for the syphilis model, which was solved numerically to show that syphilis transmission can be optimally best control using a combination of condoms usage and treatment in the primary stage of infection in both infected male and female populations.
在本研究中,我们建立了一个非线性常微分方程,以研究梅毒传播的动力学,并纳入了控制措施,即对感染男性和女性的预防与治疗。我们得到了无梅毒平衡点(SFE)和有梅毒平衡点(SPE)。我们获得了基本再生数,其可用于控制疾病传播,从而确定了无梅毒平衡点的局部和全局稳定性条件。稳定性结果表明,如果满足劳斯 - 赫尔维茨准则,该模型是局部渐近稳定的且全局渐近稳定。分岔分析结果表明该模型呈现向后分岔。我们采用庞特里亚金极大值原理来确定梅毒模型的最优系统,并通过数值求解表明,在感染的男性和女性群体中,结合使用避孕套和在感染初期进行治疗,可以对梅毒传播进行最优控制。