Suppr超能文献

结合电化学表面等离子体共振测量,使用分子动力学模拟评估[Cmim][TFSA]/电极界面处的静态微分电容。

Evaluation of static differential capacitance at the [Cmim][TFSA]/electrode interface using molecular dynamics simulation combined with electrochemical surface plasmon resonance measurements.

作者信息

Zhang Shiwei, Nishi Naoya, Katakura Seiji, Sakka Tetsuo

机构信息

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.

出版信息

Phys Chem Chem Phys. 2021 Jul 7;23(25):13905-13917. doi: 10.1039/d1cp01435h. Epub 2021 Jun 16.

Abstract

Molecular dynamic (MD) simulations have been performed for 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cmim][TFSA]), an ionic liquid (IL), on a charged graphene electrode to achieve the quantitative analysis of the static differential capacitance using the electrochemical surface plasmon resonance (ESPR). The MD simulations have provided the surface charge density on the electrode and ionic distributions in the electric double layer, both of which are indispensable for the evaluation of static differential capacitance using ESPR but are difficult to be measured by experimental techniques. This approach has allowed the quantitative analysis and explanation of the SPR angle shift in ESPR. The major contribution to the SPR angle shift is found to be the change in ionic concentrations of the first ionic layer on the electrode, owing to higher polarizabilities of ions in the first ionic layer than those in the overlayers. Moreover, the ionic orientation on the electrode and ionic multilayer structure have also been investigated in detail. The butyl group of Cmim in the first ionic layer is found to provide extra room for Cmim in the second ionic layer but exclude TFSA, which affects the interval and regularity of ionic multilayers.

摘要

已在带电荷的石墨烯电极上对离子液体1-丁基-3-甲基咪唑双(三氟甲磺酰)亚胺([Cmim][TFSA])进行了分子动力学(MD)模拟,以利用电化学表面等离子体共振(ESPR)实现对静态微分电容的定量分析。MD模拟给出了电极上的表面电荷密度和双电层中的离子分布,这两者对于使用ESPR评估静态微分电容都是不可或缺的,但难以通过实验技术测量。这种方法实现了对ESPR中SPR角位移的定量分析和解释。发现对SPR角位移的主要贡献是电极上第一离子层离子浓度的变化,这是由于第一离子层中离子的极化率高于上层中的离子。此外,还详细研究了电极上的离子取向和离子多层结构。发现第一离子层中Cmim的丁基为第二离子层中的Cmim提供了额外空间,但排斥TFSA,这影响了离子多层的间距和规则性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验