Suppr超能文献

SARS-CoV-2 感染临床预测规则的观察者间可靠性和前瞻性验证。

Inter-rater reliability and prospective validation of a clinical prediction rule for SARS-CoV-2 infection.

机构信息

Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.

出版信息

Acad Emerg Med. 2021 Jul;28(7):761-767. doi: 10.1111/acem.14309. Epub 2021 Jun 21.

Abstract

OBJECTIVES

Accurate estimation of the risk of SARS-CoV-2 infection based on bedside data alone has importance to emergency department (ED) operations and throughput. The 13-item CORC (COVID [or coronavirus] Rule-out Criteria) rule had good overall diagnostic accuracy in retrospective derivation and validation. The objective of this study was to prospectively test the inter-rater reliability and diagnostic accuracy of the CORC score and rule (score ≤ 0 negative, > 0 positive) and compare the CORC rule performance with physician gestalt.

METHODS

This noninterventional study was conducted at an urban academic ED from February 2021 to March 2021. Two practitioners were approached by research coordinators and asked to independently complete a form capturing the CORC criteria for their shared patient and their gestalt binary prediction of the SARS-CoV-2 test result and confidence (0%-100%). The criterion standard for SARS-CoV-2 was from reverse transcriptase polymerase chain reaction performed on a nasopharyngeal swab. The primary analysis was from weighted Cohen's kappa and likelihood ratios (LRs).

RESULTS

For 928 patients, agreement between observers was good for the total CORC score, κ = 0.613 (95% confidence interval [CI] = 0.579-0.646), and for the CORC rule, κ = 0.644 (95% CI = 0.591-0.697). The agreement for clinician gestalt binary determination of SARs-CoV-2 status was κ = 0.534 (95% CI = 0.437-0.632) with median confidence of 76% (first-third quartile = 66-88.5). For 425 patients who had the criterion standard, a negative CORC rule (both observers scored CORC < 0), the sensitivity was 88%, and specificity was 51%, with a negative LR (LR-) of 0.24 (95% CI = 0.10-0.50). Among patients with a mean CORC score of >4, the prevalence of a positive SARS-CoV-2 test was 58% (95% CI = 28%-85%) and positive LR was 13.1 (95% CI = 4.5-37.2). Clinician gestalt demonstrated a sensitivity of 51% and specificity of 86% with a LR- of 0.57 (95% CI = 0.39-0.74).

CONCLUSION

In this prospective study, the CORC score and rule demonstrated good inter-rater reliability and reproducible diagnostic accuracy for estimating the pretest probability of SARs-CoV-2 infection.

摘要

目的

仅基于床边数据准确估计 SARS-CoV-2 感染的风险对急诊科(ED)的运营和吞吐量具有重要意义。13 项 CORC(COVID [或冠状病毒] 排除标准)规则在回顾性推导和验证中具有良好的整体诊断准确性。本研究的目的是前瞻性测试 CORC 评分和规则(评分≤0 为阴性,>0 为阳性)的组内一致性和诊断准确性,并比较 CORC 规则与医生判断的性能。

方法

这项非干预性研究于 2021 年 2 月至 2021 年 3 月在城市学术 ED 进行。研究协调员联系了两名医生,要求他们独立填写一份表格,该表格记录了 CORC 标准中他们共同的患者的标准,并记录了他们对 SARS-CoV-2 检测结果和信心(0%-100%)的判断(二进制)。SARS-CoV-2 的标准是对鼻咽拭子进行逆转录聚合酶链反应。主要分析是基于加权 Cohen 的κ 和似然比(LR)。

结果

对于 928 名患者,观察者之间的总 CORC 评分一致性良好,κ=0.613(95%置信区间 [CI] = 0.579-0.646),CORC 规则的一致性,κ=0.644(95% CI = 0.591-0.697)。临床医生判断 SARS-CoV-2 状态的二元确定的一致性为 κ=0.534(95% CI = 0.437-0.632),中位数置信度为 76%(第一至第三四分位数=66-88.5)。对于 425 名接受标准的患者,CORC 规则(两位观察者评分 CORC < 0)为阴性,敏感性为 88%,特异性为 51%,阴性似然比(LR-)为 0.24(95% CI = 0.10-0.50)。在平均 CORC 评分>4 的患者中,阳性 SARS-CoV-2 检测的患病率为 58%(95% CI = 28%-85%),阳性 LR 为 13.1(95% CI = 4.5-37.2)。临床医生判断的敏感性为 51%,特异性为 86%,LR-为 0.57(95% CI = 0.39-0.74)。

结论

在这项前瞻性研究中,CORC 评分和规则在估计 SARS-CoV-2 感染的术前概率方面表现出良好的组内一致性和可重复性诊断准确性。

相似文献

1
Inter-rater reliability and prospective validation of a clinical prediction rule for SARS-CoV-2 infection.
Acad Emerg Med. 2021 Jul;28(7):761-767. doi: 10.1111/acem.14309. Epub 2021 Jun 21.
2
Clinical prediction rule for SARS-CoV-2 infection from 116 U.S. emergency departments 2-22-2021.
PLoS One. 2021 Mar 10;16(3):e0248438. doi: 10.1371/journal.pone.0248438. eCollection 2021.
4
Diagnostic accuracy of physician's gestalt in suspected COVID-19: Prospective bicentric study.
Acad Emerg Med. 2021 Apr;28(4):404-411. doi: 10.1111/acem.14232. Epub 2021 Mar 15.
6
Rapid identification of SARS-CoV-2-infected patients at the emergency department using routine testing.
Clin Chem Lab Med. 2020 Jun 29;58(9):1587-1593. doi: 10.1515/cclm-2020-0593. Print 2020 Aug 27.

本文引用的文献

1
A risk prediction score to identify patients at low risk for COVID-19 infection.
Singapore Med J. 2022 Aug;63(8):426-432. doi: 10.11622/smedj.2021019. Epub 2021 Mar 12.
2
Clinical prediction rule for SARS-CoV-2 infection from 116 U.S. emergency departments 2-22-2021.
PLoS One. 2021 Mar 10;16(3):e0248438. doi: 10.1371/journal.pone.0248438. eCollection 2021.
3
A rapid screening classifier for diagnosing COVID-19.
Int J Biol Sci. 2021 Jan 9;17(2):539-548. doi: 10.7150/ijbs.53982. eCollection 2021.
4
Diagnostic accuracy of physician's gestalt in suspected COVID-19: Prospective bicentric study.
Acad Emerg Med. 2021 Apr;28(4):404-411. doi: 10.1111/acem.14232. Epub 2021 Mar 15.
5
Multicenter registry of United States emergency department patients tested for SARS-CoV-2.
J Am Coll Emerg Physicians Open. 2020 Nov 12;1(6):1341-1348. doi: 10.1002/emp2.12313. eCollection 2020 Dec.
6
COVID-MATCH65-A prospectively derived clinical decision rule for severe acute respiratory syndrome coronavirus 2.
PLoS One. 2020 Dec 9;15(12):e0243414. doi: 10.1371/journal.pone.0243414. eCollection 2020.
10
Predictors of COVID-19 severity: a systematic review and meta-analysis.
F1000Res. 2020 Sep 9;9:1107. doi: 10.12688/f1000research.26186.2. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验