Suppr超能文献

用于描述含圆形夹杂的无限二维固体变形的弹性多极子方法。

Elastic multipole method for describing deformation of infinite two-dimensional solids with circular inclusions.

作者信息

Sarkar Siddhartha, Čebron Matjaž, Brojan Miha, Košmrlj Andrej

机构信息

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA.

Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia.

出版信息

Phys Rev E. 2021 May;103(5-1):053003. doi: 10.1103/PhysRevE.103.053003.

Abstract

Elastic materials with holes and inclusions are important in a large variety of contexts ranging from construction material to biological membranes. More recently, they have also been exploited in mechanical metamaterials, where the geometry of highly deformable structures is responsible for their unusual properties, such as negative Poisson's ratio, mechanical cloaking, and tunable phononic band gaps. Understanding how such structures deform in response to applied external loads is thus crucial for designing novel mechanical metamaterials. Here we present a method for predicting the linear response of infinite 2D solid structures with circular holes and inclusions by employing analogies with electrostatics. Just like an external electric field induces polarization (dipoles, quadrupoles, and other multipoles) of conductive and dielectric objects, external stress induces elastic multipoles inside holes and inclusions. Stresses generated by these induced elastic multipoles then lead to interactions between holes and inclusions, which induce additional polarization and thus additional deformation of holes and inclusions. We present a method that expands the induced polarization in a series of elastic multipoles, which systematically takes into account the interactions of inclusions and holes with the external stress field and also between them. The results of our method show good agreement with both linear finite element simulations and experiments.

摘要

带有孔洞和内含物的弹性材料在从建筑材料到生物膜等各种各样的领域中都很重要。最近,它们还被应用于机械超材料中,在这种材料中,高度可变形结构的几何形状决定了它们的特殊性能,如负泊松比、机械隐身和可调谐声子带隙。因此,了解此类结构如何响应外部施加的载荷而变形对于设计新型机械超材料至关重要。在此,我们提出一种方法,通过与静电学进行类比来预测具有圆形孔洞和内含物的无限二维固体结构的线性响应。就像外部电场会在导电和介电物体中诱导极化(偶极子、四极子和其他多极子)一样,外部应力会在孔洞和内含物内部诱导弹性多极子。这些诱导的弹性多极子产生的应力进而导致孔洞和内含物之间的相互作用,这会诱导额外的极化,从而导致孔洞和内含物的额外变形。我们提出一种方法,该方法在一系列弹性多极子中扩展诱导极化,系统地考虑了内含物和孔洞与外部应力场之间以及它们彼此之间的相互作用。我们方法的结果与线性有限元模拟和实验均显示出良好的一致性。

相似文献

3
Programmable Mechanical Metamaterials with Tailorable Negative Poisson's Ratio and Arbitrary Thermal Expansion in Multiple Thermal Deformation Modes.
ACS Appl Mater Interfaces. 2022 Aug 10;14(31):35905-35916. doi: 10.1021/acsami.2c08270. Epub 2022 Jul 26.
5
Micro-Scale Mechanical Metamaterial with a Controllable Transition in the Poisson's Ratio and Band Gap Formation.
Adv Mater. 2023 May;35(20):e2210993. doi: 10.1002/adma.202210993. Epub 2023 Apr 2.
6
Electric field-induced clustering in nanocomposite films of highly polarizable inclusions.
J Colloid Interface Sci. 2024 Aug 15;668:587-598. doi: 10.1016/j.jcis.2024.04.134. Epub 2024 Apr 24.
7
Finite-element simulation of the depolarization factor of arbitrarily shaped inclusions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031405. doi: 10.1103/PhysRevE.74.031405. Epub 2006 Sep 26.
10
Geometry and mechanics of two-dimensional defects in amorphous materials.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10873-8. doi: 10.1073/pnas.1506531112. Epub 2015 Aug 10.

引用本文的文献

1
The fluidic memristor as a collective phenomenon in elastohydrodynamic networks.
Nat Commun. 2024 Apr 10;15(1):3121. doi: 10.1038/s41467-024-47110-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验