Suppr超能文献

在玻色-爱因斯坦凝聚体中产生具有可控且接近零速度的孤子。

Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates.

作者信息

Fritsch A R, Lu Mingwu, Reid G H, Piñeiro A M, Spielman I B

机构信息

Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland 20899, USA.

出版信息

Phys Rev A (Coll Park). 2020 May;101(5). doi: 10.1103/PhysRevA.101.053629.

Abstract

Established techniques for deterministically creating dark solitons in repulsively interacting atomic Bose-Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because velocity affects the stability of individual solitons and the properties of soliton-soliton interactions, this technical limitation has hindered experimental progress. Here we create dark solitons in highly anisotropic cigar-shaped BECs with arbitrary position and velocity by simultaneously engineering the amplitude and phase of the condensate wave function, improving upon previous techniques which explicitly manipulated only the condensate phase. The single dark soliton solution present in true one-dimensional (1D) systems corresponds to the kink soliton in anisotropic three-dimensional systems and is joined by a host of additional dark solitons, including vortex ring and solitonic vortex solutions. We readily create dark solitons with speeds from zero to half the sound speed. The observed soliton oscillation frequency suggests that we imprinted solitonic vortices, which for our cigar-shaped system are the only stable solitons expected for these velocities. Our numerical simulations of 1D BECs show this technique to be equally effective for creating kink solitons when they are stable. We demonstrate the utility of this technique by deterministically colliding dark solitons with domain walls in two-component spinor BECs.

摘要

在相互排斥作用的原子玻色-爱因斯坦凝聚体(BECs)中确定性地产生暗孤子的现有技术,只能实现窄范围的孤子速度。由于速度会影响单个孤子的稳定性以及孤子-孤子相互作用的性质,这种技术限制阻碍了实验进展。在此,我们通过同时调控凝聚体波函数的振幅和相位,在高度各向异性的雪茄形BECs中产生具有任意位置和速度的暗孤子,改进了之前仅明确操控凝聚体相位的技术。真实一维(1D)系统中存在的单个暗孤子解对应于各向异性三维系统中的扭结孤子,并伴有许多其他暗孤子,包括涡环和孤子涡旋解。我们很容易产生速度从零到声速一半的暗孤子。观测到的孤子振荡频率表明我们印刻了孤子涡旋,对于我们的雪茄形系统,这些涡旋是这些速度下预期的唯一稳定孤子。我们对一维BECs的数值模拟表明,当扭结孤子稳定时,该技术在产生扭结孤子方面同样有效。我们通过在双组分自旋or BECs中使暗孤子与畴壁确定性碰撞,展示了该技术的实用性。

相似文献

1
Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates.
Phys Rev A (Coll Park). 2020 May;101(5). doi: 10.1103/PhysRevA.101.053629.
2
Multivalley dark solitons in multicomponent Bose-Einstein condensates with repulsive interactions.
Phys Rev E. 2021 Jul;104(1-1):014201. doi: 10.1103/PhysRevE.104.014201.
3
Three-Component Soliton States in Spinor F=1 Bose-Einstein Condensates.
Phys Rev Lett. 2018 Feb 9;120(6):063202. doi: 10.1103/PhysRevLett.120.063202.
4
Brownian motion of solitons in a Bose-Einstein condensate.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2503-2508. doi: 10.1073/pnas.1615004114. Epub 2017 Feb 14.
5
Solitons and rogue waves in spinor Bose-Einstein condensates.
Phys Rev E. 2018 Feb;97(2-1):022221. doi: 10.1103/PhysRevE.97.022221.
7
Watching dark solitons decay into vortex rings in a Bose-Einstein condensate.
Phys Rev Lett. 2001 Apr 2;86(14):2926-9. doi: 10.1103/PhysRevLett.86.2926.
8
Solitons in spin-orbit-coupled spin-2 spinor Bose-Einstein condensates.
Phys Rev E. 2019 Jun;99(6-1):062220. doi: 10.1103/PhysRevE.99.062220.
9
Observation of Two-Dimensional Localized Jones-Roberts Solitons in Bose-Einstein Condensates.
Phys Rev Lett. 2017 Oct 13;119(15):150403. doi: 10.1103/PhysRevLett.119.150403. Epub 2017 Oct 11.

引用本文的文献

1
Machine-learning enhanced dark soliton detection in Bose-Einstein condensates.
Mach Learn Sci Technol. 2021;2(3). doi: 10.1088/2632-2153/abed1e.

本文引用的文献

1
Kinetic theory of dark solitons with tunable friction.
Phys Rev A (Coll Park). 2017 May;95(5). doi: 10.1103/PhysRevA.95.053604. Epub 2017 May 3.
2
Solitons in Bose-Einstein Condensates with Helicoidal Spin-Orbit Coupling.
Phys Rev Lett. 2017 May 12;118(19):190401. doi: 10.1103/PhysRevLett.118.190401. Epub 2017 May 11.
3
Brownian motion of solitons in a Bose-Einstein condensate.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2503-2508. doi: 10.1073/pnas.1615004114. Epub 2017 Feb 14.
4
Non-Markovian Quantum Friction of Bright Solitons in Superfluids.
Phys Rev Lett. 2016 Jun 3;116(22):225301. doi: 10.1103/PhysRevLett.116.225301. Epub 2016 May 31.
5
Magnetic phases of spin-1 spin-orbit-coupled Bose gases.
Nat Commun. 2016 Mar 30;7:10897. doi: 10.1038/ncomms10897.
6
Observation of solitonic vortices in Bose-Einstein condensates.
Phys Rev Lett. 2014 Aug 8;113(6):065302. doi: 10.1103/PhysRevLett.113.065302. Epub 2014 Aug 4.
7
Motion of a solitonic vortex in the BEC-BCS crossover.
Phys Rev Lett. 2014 Aug 8;113(6):065301. doi: 10.1103/PhysRevLett.113.065301. Epub 2014 Aug 4.
8
Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate.
Science. 2010 Sep 3;329(5996):1182-5. doi: 10.1126/science.1191224.
9
Experimental observation of oscillating and interacting matter wave dark solitons.
Phys Rev Lett. 2008 Sep 26;101(13):130401. doi: 10.1103/PhysRevLett.101.130401. Epub 2008 Sep 22.
10
Collisions of dark solitons in elongated Bose-Einstein condensates.
Phys Rev Lett. 2008 Sep 19;101(12):120406. doi: 10.1103/PhysRevLett.101.120406.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验