Brown Elizabeth R, Islas Clara P Dominguez, Zhang Jingyang
Fred Hutchinson Cancer Reseasrch Center, 1100 Fairview Avenue North, M2-C200, Seattle, WA, 98109-1024, USA.
Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Stat Commun Infect Dis. 2020 Sep;12(Suppl 1). doi: 10.1515/scid-2019-0016. Epub 2020 Sep 24.
Using the MTN-020/ASPIRE HIV prevention trial as a motivating example, our objective is to construct a joint model for the HIV exposure process through vaginal intercourse and the time to HIV infection in a population of sexually active women. By modeling participants' HIV infection in terms of exposures, rather than time exposed, our aim is to obtain a valid estimate of the per-act efficacy of a preventive intervention.
Within the context of HIV prevention trials, in which the frequency of sex acts is self-reported periodically by the participants, we model the exposure process of the trial participants with a non-homogeneous Poisson process. This approach allows for variability in the rate of sexual contacts between participants as well as variability in the rate of sexual contacts over time. The time to HIV infection for each participant is modeled as the time to the exposure that results in HIV infection, based on the modeled sexual contact rate. We propose an empirical Bayes approach for estimation.
We report the results of a simulation study where we evaluate the performance of our proposed approachandcompareittothetraditionalapproachofestimatingtheoverallreductioninHIVincidenceusing a Proportional Hazards Cox model. The proposed approach is also illustrated with data from the MTN-020/ASPIRE trial.
The proposed joint modeling, along with the proposed empirical Bayes estimation approach, can provide valid estimation of the per-exposure efficacy of a preventive intervention.
以MTN - 020/ASPIRE HIV预防试验作为一个有启发性的例子,我们的目标是为性活跃女性群体中通过阴道性交的HIV暴露过程和HIV感染时间构建一个联合模型。通过根据暴露情况而非暴露时间对参与者的HIV感染进行建模,我们的目的是获得预防性干预每次行为效力的有效估计。
在HIV预防试验的背景下,参与者会定期自我报告性行为频率,我们用非齐次泊松过程对试验参与者的暴露过程进行建模。这种方法考虑到了参与者之间性接触率的变异性以及性接触率随时间的变异性。根据建模的性接触率,将每个参与者的HIV感染时间建模为导致HIV感染的暴露时间。我们提出一种经验贝叶斯方法进行估计。
我们报告了一项模拟研究的结果,在该研究中我们评估了所提出方法的性能,并将其与使用比例风险Cox模型估计HIV发病率总体降低情况的传统方法进行比较。还使用MTN - 020/ASPIRE试验的数据说明了所提出的方法。
所提出的联合建模以及所提出的经验贝叶斯估计方法,可以为预防性干预的每次暴露效力提供有效估计。