School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK.
AstrobiologyOU, The Open University, Milton Keynes, UK.
Geobiology. 2021 Sep;19(5):489-509. doi: 10.1111/gbi.12459. Epub 2021 Jun 18.
Due to their potential to support chemolithotrophic life, relic hydrothermal systems on Mars are a key target for astrobiological exploration. We analysed water and sediments at six geothermal pools from the rhyolitic Kerlingarfjöll and basaltic Kverkfjöll volcanoes in Iceland, to investigate the localised controls on the habitability of these systems in terms of microbial community function. Our results show that host lithology plays a minor role in pool geochemistry and authigenic mineralogy, with the system geochemistry primarily controlled by deep volcanic processes. We find that by dictating pool water pH and redox conditions, deep volcanic processes are the primary control on microbial community structure and function, with water input from the proximal glacier acting as a secondary control by regulating pool temperatures. Kerlingarfjöll pools have reduced, circum-neutral CO -rich waters with authigenic calcite-, pyrite- and kaolinite-bearing sediments. The dominant metabolisms inferred from community profiles obtained by 16S rRNA gene sequencing are methanogenesis, respiration of sulphate and sulphur (S ) oxidation. In contrast, Kverkfjöll pools have oxidised, acidic (pH < 3) waters with high concentrations of SO and high argillic alteration, resulting in Al-phyllosilicate-rich sediments. The prevailing metabolisms here are iron oxidation, sulphur oxidation and nitrification. Where analogous ice-fed hydrothermal systems existed on early Mars, similar volcanic processes would likely have controlled localised metabolic potential and thus habitability. Moreover, such systems offer several habitability advantages, including a localised source of metabolic redox pairs for chemolithotrophic microorganisms and accessible trace metals. Similar pools could have provided transient environments for life on Mars; when paired with surface or near-surface ice, these habitability niches could have persisted into the Amazonian. Additionally, they offer a confined site for biosignature formation and deposition that lends itself well to in situ robotic exploration.
由于它们具有支持化能自养生命的潜力,火星上的遗迹热液系统是天体生物学探索的一个关键目标。我们分析了来自冰岛流纹岩的 Kerlingarfjöll 和玄武岩的 Kverkfjöll 火山的六个地热池的水和沉积物,以调查这些系统在微生物群落功能方面的局部可居住性的局部控制。我们的研究结果表明,基岩岩性对池地球化学和自生矿物学的作用较小,系统地球化学主要受深部火山过程的控制。我们发现,通过控制池水的 pH 值和氧化还原条件,深部火山过程是微生物群落结构和功能的主要控制因素,而来自附近冰川的水输入通过调节池温起到次要控制作用。Kerlingarfjöll 池具有还原、近中性、富含 CO 的水,含有自生方解石、黄铁矿和高岭石的沉积物。通过 16S rRNA 基因测序获得的群落图谱推断,主要代谢途径是产甲烷作用、硫酸盐呼吸和硫(S)氧化。相比之下,Kverkfjöll 池具有氧化、酸性(pH<3)的水,其中含有高浓度的 SO 和高的伊利石蚀变,导致富含铝的层状硅酸盐沉积物。这里主要的代谢途径是铁氧化、硫氧化和硝化作用。如果早期火星上存在类似的冰驱动的热液系统,类似的火山过程可能控制了局部的代谢潜力,从而影响了可居住性。此外,这些系统具有几个可居住性优势,包括为化能自养微生物提供局部代谢氧化还原对的来源和可接近的痕量金属。类似的池塘可能为火星上的生命提供了短暂的环境;当与表面或近表面的冰结合时,这些可居住性小生境可能会持续到亚马逊时代。此外,它们为生物特征的形成和沉积提供了一个受限的场所,非常适合原位机器人探索。