Suppr超能文献

使用血液生物标志物对抑郁症进行分类:一项大型人群研究。

Classifying depression using blood biomarkers: A large population study.

机构信息

Department of Preventive Medicine, School of Basic Medicine and Public Health, Jinan University, Guangzhou, 510632, China; Department of Psychiatry, New York University School of Medicine, One Park Ave, New York, NY, 10016, USA; Department of Mathematics and Statistics, College of Arts and Sciences, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA.

Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA.

出版信息

J Psychiatr Res. 2021 Aug;140:364-372. doi: 10.1016/j.jpsychires.2021.05.070. Epub 2021 Jun 2.

Abstract

BACKGROUND

Depression is a common mood disorder characterized by persistent low mood or lack of interest in activities. People with other chronic medical conditions such as obesity and diabetes are at greater risk of depression. Diagnosing depression can be a challenge for primary care providers and others who lack specialized training for these disorders and have insufficient time for in-depth clinical evaluation. We aimed to create a more objective low-cost diagnostic tool based on patients' characteristics and blood biomarkers.

METHODS

Blood biomarker results were obtained from the National Health and Nutrition Examination Survey (NHANES, 2007-2016). A prediction model utilizing random forest (RF) in NHANES (2007-2014) to identify depression was derived and validated internally using out-of-bag technique. Afterwards, the model was validated externally using a validation dataset (NHANES, 2015-2016). We performed four subgroup comparisons (full dataset, overweight and obesity dataset (BMI≥25), diabetes dataset, and metabolic syndrome dataset) then selected features using backward feature selection from RF.

RESULTS

Family income, Gamma-glutamyl transferase (GGT), glucose, Triglyceride, red cell distribution width (RDW), creatinine, Basophils count or percent, Eosinophils count or percent, and Bilirubin were the most important features from four models. In the training set, AUC from full, overweight and obesity, diabetes, and metabolic syndrome datasets were 0.83, 0.80, 0.82, and 0.82, respectively. In the validation set, AUC were 0.69, 0.63, 0.66, and 0.64, respectively.

CONCLUSION

Results of routine blood laboratory tests had good predictive value for distinguishing depression cases from control groups not only in the general population, but also individuals with metabolism-related chronic diseases.

摘要

背景

抑郁症是一种常见的情绪障碍,其特征为持续的情绪低落或对活动缺乏兴趣。患有肥胖症和糖尿病等其他慢性疾病的人患抑郁症的风险更高。对于缺乏这些疾病专业培训且没有足够时间进行深入临床评估的初级保健提供者和其他人员来说,诊断抑郁症可能具有挑战性。我们旨在基于患者特征和血液生物标志物创建一种更客观、低成本的诊断工具。

方法

从国家健康和营养检查调查(NHANES,2007-2016)中获得血液生物标志物结果。使用 NHANES(2007-2014)中的随机森林(RF)创建并内部使用袋外技术验证用于识别抑郁症的预测模型。然后,使用验证数据集(NHANES,2015-2016)对该模型进行外部验证。我们进行了四项亚组比较(全部数据集、超重和肥胖数据集(BMI≥25)、糖尿病数据集和代谢综合征数据集),然后使用 RF 中的后向特征选择选择特征。

结果

家庭收入、γ-谷氨酰转移酶(GGT)、葡萄糖、甘油三酯、红细胞分布宽度(RDW)、肌酐、嗜碱性粒细胞计数或百分比、嗜酸性粒细胞计数或百分比和胆红素是四个模型中最重要的特征。在训练集中,来自全部、超重和肥胖、糖尿病和代谢综合征数据集的 AUC 分别为 0.83、0.80、0.82 和 0.82。在验证集中,AUC 分别为 0.69、0.63、0.66 和 0.64。

结论

常规血液实验室测试的结果对于区分抑郁症病例和对照组具有良好的预测价值,不仅在一般人群中,而且在与代谢相关的慢性疾病患者中也是如此。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验