Suppr超能文献

用于空气污染指数马尔可夫链建模的稳健经验贝叶斯方法

Robust empirical Bayes approach for Markov chain modeling of air pollution index.

作者信息

Alyousifi Yousif, Ibrahim Kamarulzaman, Kang Wei, Zin Wan Zawiah Wan

机构信息

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia.

Center for Geospatial Sciences, University of California, Riverside, CA USA.

出版信息

J Environ Health Sci Eng. 2021 Jan 26;19(1):343-356. doi: 10.1007/s40201-020-00607-4. eCollection 2021 Jun.

Abstract

UNLABELLED

Air pollution is a matter of concern among the public, especially for those living in urban and industrial areas. Markov chain modeling is often used to model the underlying dynamics of air pollution, which involves describing the transition probability of going from one air pollution state to another. Thus, estimating the transition probability matrix for the data of the air pollution index (API) is an essential process in the modeling. However, one may observe many zero probabilities in the transition probability matrix, especially when faced with a small sample, interpreting the results with respect to the climate condition less realistic. This study proposes a robust empirical Bayes method, which incorporates a method of smoothing the zero frequencies in the count matrix, contributing to an improved estimation of the transition probability matrix. The robustness of the empirical Bayesian estimation is investigated based on Bayes risk. The transition probability matrices estimated based on the robust empirical Bayes method for the hourly API data collected from seven monitoring stations in Malaysia for the period 2012 to 2014 are used for determining the air pollution characteristics such as the mean residence time, the steady-state probability and the mean recurrence time. Furthermore, the proposed method has been evaluated by Monte Carlo simulations. Results suggest that it is quite effective in producing non-zero transition probability estimates, and superior to the maximum likelihood method in terms of minimizing the mean squared error for individual and entire transition probabilities. Therefore, the robust empirical Bayes method proves to be an improved approach to the estimation of the Markov chain. When applied to API data, it could provide important information on air pollution dynamics that may help guiding the development of proper strategies for managing the impact of air quality.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s40201-020-00607-4.

摘要

未标注

空气污染是公众关注的问题,尤其是对于生活在城市和工业区的人们。马尔可夫链建模常用于对空气污染的潜在动态进行建模,这涉及描述从一种空气污染状态转变为另一种状态的转移概率。因此,估计空气污染指数(API)数据的转移概率矩阵是建模中的一个关键过程。然而,人们可能会在转移概率矩阵中观察到许多零概率,特别是当面对小样本时,结合气候条件来解释结果就不太现实。本研究提出了一种稳健的经验贝叶斯方法,该方法结合了一种平滑计数矩阵中零频率的方法,有助于改进转移概率矩阵的估计。基于贝叶斯风险研究了经验贝叶斯估计的稳健性。使用基于稳健经验贝叶斯方法对2012年至2014年期间从马来西亚七个监测站收集的每小时API数据估计的转移概率矩阵来确定空气污染特征,如平均停留时间、稳态概率和平均重现时间。此外,通过蒙特卡罗模拟对所提出的方法进行了评估。结果表明,该方法在产生非零转移概率估计方面非常有效,并且在最小化单个和整个转移概率的均方误差方面优于最大似然法。因此,稳健经验贝叶斯方法被证明是一种改进的马尔可夫链估计方法。当应用于API数据时,它可以提供有关空气污染动态的重要信息,这可能有助于指导制定适当的策略来管理空气质量的影响。

补充信息

在线版本包含可在10.1007/s40201-020-00607-4获取的补充材料。

相似文献

1
Robust empirical Bayes approach for Markov chain modeling of air pollution index.
J Environ Health Sci Eng. 2021 Jan 26;19(1):343-356. doi: 10.1007/s40201-020-00607-4. eCollection 2021 Jun.
2
Modeling the spatio-temporal dynamics of air pollution index based on spatial Markov chain model.
Environ Monit Assess. 2020 Oct 21;192(11):719. doi: 10.1007/s10661-020-08666-8.
7
Bayesian quantile nonhomogeneous hidden Markov models.
Stat Methods Med Res. 2021 Jan;30(1):112-128. doi: 10.1177/0962280220942802. Epub 2020 Jul 29.
8
[The parasite capacity of the host population].
Parazitologiia. 2002 Jan-Feb;36(1):48-59.
10
Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method.
Mol Biol Evol. 1997 Jul;14(7):717-24. doi: 10.1093/oxfordjournals.molbev.a025811.

引用本文的文献

1
Bayesian inference of a spatially dependent semi-Markovian model with application to Madagascar Covid'19 data.
PLoS One. 2025 Jul 7;20(7):e0326264. doi: 10.1371/journal.pone.0326264. eCollection 2025.

本文引用的文献

1
Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach.
Environ Pollut. 2020 Aug;263(Pt A):114570. doi: 10.1016/j.envpol.2020.114570. Epub 2020 Apr 18.
2
Modeling the spatio-temporal dynamics of air pollution index based on spatial Markov chain model.
Environ Monit Assess. 2020 Oct 21;192(11):719. doi: 10.1007/s10661-020-08666-8.
3
Short-term exposure to air pollution and conjunctivitis outpatient visits: A multi-city study in China.
Environ Pollut. 2019 Nov;254(Pt A):113030. doi: 10.1016/j.envpol.2019.113030. Epub 2019 Aug 9.
4
The long-term assessment of air quality on an island in Malaysia.
Heliyon. 2018 Dec 18;4(12):e01054. doi: 10.1016/j.heliyon.2018.e01054. eCollection 2018 Dec.
5
Ambient air pollution and daily hospital admissions: A nationwide study in 218 Chinese cities.
Environ Pollut. 2018 Nov;242(Pt B):1042-1049. doi: 10.1016/j.envpol.2018.07.116. Epub 2018 Aug 1.
6
Review of modelling air pollution from traffic at street-level - The state of the science.
Environ Pollut. 2018 Oct;241:775-786. doi: 10.1016/j.envpol.2018.06.019. Epub 2018 Jun 13.
7
Spatiotemporal evolution of the remotely sensed global continental PM concentration from 2000-2014 based on Bayesian statistics.
Environ Pollut. 2018 Jul;238:471-481. doi: 10.1016/j.envpol.2018.03.050. Epub 2018 Mar 30.
8
Modeling air quality in main cities of Peninsular Malaysia by using a generalized Pareto model.
Environ Monit Assess. 2016 Jan;188(1):65. doi: 10.1007/s10661-015-5070-9. Epub 2015 Dec 30.
10
An assessment of air pollutant exposure methods in Mexico City, Mexico.
J Air Waste Manag Assoc. 2015 May;65(5):581-91. doi: 10.1080/10962247.2015.1020974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验