Suppr超能文献

用于法乐四联症手术的患者特异性移植物的半自动规划和三维电纺

Semi-Automatic Planning and Three-Dimensional Electrospinning of Patient-Specific Grafts for Fontan Surgery.

出版信息

IEEE Trans Biomed Eng. 2022 Jan;69(1):186-198. doi: 10.1109/TBME.2021.3091113. Epub 2021 Dec 23.

Abstract

This paper proposes a semi-automatic Fontan surgery planning method for designing and manufacturing hemodynamically optimized patient-specific grafts. Fontan surgery is a palliative procedure for patients with a single ventricle heart defect by creating a new path using a vascular graft for the deoxygenated blood to be directed to the lungs, bypassing the heart. However, designing patient-specific grafts with optimized hemodynamic performance is a complex task due to the variety of patient-specific anatomies, confined surgical planning space, and the requirement of simultaneously considering multiple design criteria for vascular graft optimization. To address these challenges, we used parameterized Fontan pathways to explore patient-specific vascular graft design spaces and search for optimal solutions by formulating a nonlinear constrained optimization problem, which minimizes indexed power loss (iPL) of the Fontan model by constraining hepatic flow distribution (HFD), percentage of abnormal wall shear stress (%WSS) and geometric interference between Fontan pathways and the heart models (InDep) within clinically acceptable thresholds. Gaussian process regression was employed to build surrogate models of the hemodynamic parameters as well as InDep and [Formula: see text] (conduit model smoothness indicator) for optimization by pattern search. We tested the proposed method on two patient-specific models (n=2). The results showed the automatically optimized (AutoOpt) Fontan models hemodynamically outperformed or at least are comparable to manually optimized Fontan models with significantly reduced surgical planning time (15 hours versus over 2 weeks). We also demonstrated feasibility of manufacturing the AutoOpt Fontan conduits by using electrospun nanofibers.

摘要

本文提出了一种半自动化的 Fontan 手术规划方法,用于设计和制造血流动力学优化的患者特异性移植物。Fontan 手术是一种姑息性手术,适用于单心室心脏缺陷的患者,通过使用血管移植物为缺氧血液创建新路径,将其引导至肺部,绕过心脏。然而,设计具有优化血流动力学性能的患者特异性移植物是一项复杂的任务,这是因为患者的解剖结构多种多样,手术规划空间有限,并且需要同时考虑血管移植物优化的多个设计标准。为了解决这些挑战,我们使用参数化的 Fontan 通路来探索患者特异性血管移植物设计空间,并通过构建一个非线性约束优化问题来寻找最佳解决方案,该问题通过约束肝血流量分布(HFD)、异常壁面切应力百分比(%WSS)和 Fontan 通路与心脏模型之间的几何干扰(InDep)在临床可接受的阈值内最小化 Fontan 模型的索引功率损失(iPL)。我们使用高斯过程回归来构建血流动力学参数以及 InDep 和 [Formula: see text](导管模型平滑度指标)的替代模型,以便通过模式搜索进行优化。我们在两个患者特异性模型(n=2)上测试了所提出的方法。结果表明,自动优化的(AutoOpt)Fontan 模型在血流动力学方面表现优于或至少与手动优化的 Fontan 模型相当,同时大大缩短了手术规划时间(15 小时与超过 2 周相比)。我们还通过使用电纺纳米纤维展示了制造 AutoOpt Fontan 移植物的可行性。

相似文献

1
Semi-Automatic Planning and Three-Dimensional Electrospinning of Patient-Specific Grafts for Fontan Surgery.
IEEE Trans Biomed Eng. 2022 Jan;69(1):186-198. doi: 10.1109/TBME.2021.3091113. Epub 2021 Dec 23.
2
Surgical Planning and Optimization of Patient-Specific Fontan Grafts With Uncertain Post-Operative Boundary Conditions and Anastomosis Displacement.
IEEE Trans Biomed Eng. 2022 Nov;69(11):3472-3483. doi: 10.1109/TBME.2022.3170922. Epub 2022 Oct 19.
3
Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics.
J Thorac Cardiovasc Surg. 2018 Apr;155(4):1734-1742. doi: 10.1016/j.jtcvs.2017.11.068. Epub 2017 Dec 5.
4
Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study.
J Thorac Cardiovasc Surg. 2012 May;143(5):1086-97. doi: 10.1016/j.jtcvs.2011.06.042. Epub 2011 Sep 29.
6
Role of surgeon intuition and computer-aided design in Fontan optimization: A computational fluid dynamics simulation study.
J Thorac Cardiovasc Surg. 2020 Jul;160(1):203-212.e2. doi: 10.1016/j.jtcvs.2019.12.068. Epub 2020 Jan 8.
7
The first cohort of prospective Fontan surgical planning patients with follow-up data: How accurate is surgical planning?
J Thorac Cardiovasc Surg. 2019 Mar;157(3):1146-1155. doi: 10.1016/j.jtcvs.2018.11.102. Epub 2018 Dec 11.
8
Hemodynamic Effects of Additional Pulmonary Blood Flow on Glenn and Fontan Circulation.
Cardiovasc Eng Technol. 2020 Jun;11(3):268-282. doi: 10.1007/s13239-020-00459-x. Epub 2020 Feb 18.
9
Hemodynamic Impact of Superior Vena Cava Placement in the Y-Graft Fontan Connection.
Ann Thorac Surg. 2016 Jan;101(1):183-9. doi: 10.1016/j.athoracsur.2015.07.012. Epub 2015 Oct 1.

引用本文的文献

1
Electrospun nanofibers: Focus on local therapeutic delivery targeting infectious disease.
J Drug Deliv Sci Technol. 2025 Feb;104. doi: 10.1016/j.jddst.2024.106520. Epub 2024 Dec 20.
2
Virtual Planning and Patient-Specific Graft Design for Aortic Repairs.
Cardiovasc Eng Technol. 2024 Apr;15(2):123-136. doi: 10.1007/s13239-023-00701-2. Epub 2023 Nov 20.
3
The convergent cavopulmonary connection: A novel and efficient configuration of Fontan to accommodate mechanical support.
JTCVS Open. 2023 Jan 11;13:320-329. doi: 10.1016/j.xjon.2022.12.009. eCollection 2023 Mar.
4
Location matters: Offset in tissue-engineered vascular graft implantation location affects wall shear stress in porcine models.
JTCVS Open. 2022 Aug 24;12:355-363. doi: 10.1016/j.xjon.2022.08.006. eCollection 2022 Dec.
6
Surgical Planning and Optimization of Patient-Specific Fontan Grafts With Uncertain Post-Operative Boundary Conditions and Anastomosis Displacement.
IEEE Trans Biomed Eng. 2022 Nov;69(11):3472-3483. doi: 10.1109/TBME.2022.3170922. Epub 2022 Oct 19.

本文引用的文献

1
Automatic Shape Optimization of Patient-Specific Tissue Engineered Vascular Grafts for Aortic Coarctation.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2319-2323. doi: 10.1109/EMBC44109.2020.9176371.
2
Role of surgeon intuition and computer-aided design in Fontan optimization: A computational fluid dynamics simulation study.
J Thorac Cardiovasc Surg. 2020 Jul;160(1):203-212.e2. doi: 10.1016/j.jtcvs.2019.12.068. Epub 2020 Jan 8.
3
The first cohort of prospective Fontan surgical planning patients with follow-up data: How accurate is surgical planning?
J Thorac Cardiovasc Surg. 2019 Mar;157(3):1146-1155. doi: 10.1016/j.jtcvs.2018.11.102. Epub 2018 Dec 11.
5
Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics.
J Thorac Cardiovasc Surg. 2018 Apr;155(4):1734-1742. doi: 10.1016/j.jtcvs.2017.11.068. Epub 2017 Dec 5.
6
Fontan Surgical Planning: Previous Accomplishments, Current Challenges, and Future Directions.
J Cardiovasc Transl Res. 2018 Apr;11(2):133-144. doi: 10.1007/s12265-018-9786-0. Epub 2018 Jan 16.
7
Longitudinal Outcomes of Patients With Single Ventricle After the Fontan Procedure.
J Am Coll Cardiol. 2017 Jun 6;69(22):2735-2744. doi: 10.1016/j.jacc.2017.03.582.
8
Long-term survival after the Fontan operation: Twenty years of experience at a single center.
J Thorac Cardiovasc Surg. 2017 Jul;154(1):243-253.e2. doi: 10.1016/j.jtcvs.2017.01.056. Epub 2017 Mar 6.
9
Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model.
J Thorac Cardiovasc Surg. 2017 Apr;153(4):924-932. doi: 10.1016/j.jtcvs.2016.10.066. Epub 2016 Nov 14.
10
The Tissue-Engineered Vascular Graft-Past, Present, and Future.
Tissue Eng Part B Rev. 2016 Feb;22(1):68-100. doi: 10.1089/ten.teb.2015.0100. Epub 2015 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验