Suppr超能文献

金属离子电池电极材料的机器学习筛选

Machine Learning Screening of Metal-Ion Battery Electrode Materials.

作者信息

Moses Isaiah A, Joshi Rajendra P, Ozdemir Burak, Kumar Neeraj, Eickholt Jesse, Barone Veronica

机构信息

Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, United States.

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Nov 17;13(45):53355-53362. doi: 10.1021/acsami.1c04627. Epub 2021 Jun 23.

Abstract

Rechargeable batteries provide crucial energy storage systems for renewable energy sources, as well as consumer electronics and electrical vehicles. There are a number of important parameters that determine the suitability of electrode materials for battery applications, such as the average voltage and the maximum specific capacity which contribute to the overall energy density. Another important performance criterion for battery electrode materials is their volume change upon charging and discharging, which contributes to determine the cyclability, Coulombic efficiency, and safety of a battery. In this work, we present deep neural network regression machine learning models (ML), trained on data obtained from the Materials Project database, for predicting average voltages and volume change upon charging and discharging of electrode materials for metal-ion batteries. Our models exhibit good performance as measured by the average mean absolute error obtained from a 10-fold cross-validation, as well as on independent test sets. We further assess the robustness of our ML models by investigating their screening potential beyond the training database. We produce Na-ion electrodes by systematically replacing Li-ions in the original database by Na-ions and, then, selecting a set of 22 electrodes that exhibit a good performance in energy density, as well as small volume variations upon charging and discharging, as predicted by the machine learning model. The ML predictions for these materials are then compared to quantum-mechanics based calculations. Our results reaffirm the significant role of machine learning techniques in the exploration of materials for battery applications.

摘要

可充电电池为可再生能源、消费电子产品和电动汽车提供了至关重要的能量存储系统。有许多重要参数决定了电极材料在电池应用中的适用性,例如对整体能量密度有贡献的平均电压和最大比容量。电池电极材料的另一个重要性能标准是其在充电和放电时的体积变化,这有助于确定电池的循环寿命、库仑效率和安全性。在这项工作中,我们展示了基于从材料项目数据库获得的数据训练的深度神经网络回归机器学习模型(ML),用于预测金属离子电池电极材料的平均电压和充电及放电时的体积变化。通过10折交叉验证以及在独立测试集上获得的平均平均绝对误差来衡量,我们的模型表现良好。我们通过研究模型在训练数据库之外的筛选潜力,进一步评估了ML模型的稳健性。我们通过用钠离子系统地替换原始数据库中的锂离子,然后选择一组在能量密度方面表现良好且根据机器学习模型预测在充电和放电时体积变化较小的22种电极,制备了钠离子电极。然后将这些材料的ML预测结果与基于量子力学的计算结果进行比较。我们的结果再次证实了机器学习技术在电池应用材料探索中的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验