Suppr超能文献

Observer-Based Adaptive Optimized Control for Stochastic Nonlinear Systems With Input and State Constraints.

作者信息

Li Yongming, Zhang Jiaxin, Liu Wei, Tong Shaocheng

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7791-7805. doi: 10.1109/TNNLS.2021.3087796. Epub 2022 Nov 30.

Abstract

In this work, an adaptive neural network (NN) optimized output-feedback control problem is studied for a class of stochastic nonlinear systems with unknown nonlinear dynamics, input saturation, and state constraints. A nonlinear state observer is designed to estimate the unmeasured states, and the NNs are used to approximate the unknown nonlinear functions. Under the framework of the backstepping technique, the virtual and actual optimal controllers are developed by employing the actor-critic architecture. Meanwhile, the tan-type Barrier optimal performance index functions are developed to prevent the nonlinear systems from the state constraints, and all the states are confined within the preselected compact sets all the time. It is worth mentioning that the proposed optimized control is clearly simple since the reinforcement learning (RL) algorithm is derived based on the negative gradient of a simple positive function. Furthermore, the proposed optimal control strategy ensures that all the signals in the closed-loop system are bounded. Finally, a practical simulation example is carried out to further illustrate the effectiveness of the proposed optimal control method.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验