Zell- Und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
Department of Medicine, University of Cambridge, Cambridge, UK.
BMC Ecol Evol. 2021 Jun 23;21(1):131. doi: 10.1186/s12862-021-01858-x.
ApaH like phosphatases (ALPHs) originate from the bacterial ApaH protein and have been identified in all eukaryotic super-groups. Only two of these proteins have been functionally characterised. We have shown that the ApaH like phosphatase ALPH1 from the Kinetoplastid Trypanosoma brucei is the mRNA decapping enzyme of the parasite. In eukaryotes, Dcp2 is the major mRNA decapping enzyme and mRNA decapping by ALPHs is unprecedented, but the bacterial ApaH protein was recently found decapping non-conventional caps of bacterial mRNAs. These findings prompted us to explore whether mRNA decapping by ALPHs is restricted to Kinetoplastida or could be more widespread among eukaryotes.
We screened 827 eukaryotic proteomes with a newly developed Python-based algorithm for the presence of ALPHs and used the data to characterize the phylogenetic distribution, conserved features, additional domains and predicted intracellular localisation of this protein family. For most organisms, we found ALPH proteins to be either absent (495/827 organisms) or to have non-cytoplasmic localisation predictions (73% of all ALPHs), excluding a function in mRNA decapping. Although, non-cytoplasmic ALPH proteins had in vitro mRNA decapping activity. Only 71 non-Kinetoplastida have ALPH proteins with predicted cytoplasmic localisations. However, in contrast to Kinetoplastida, these organisms also possess a homologue of Dcp2 and in contrast to ALPH1 of Kinetoplastida, these ALPH proteins are very short and consist of the catalytic domain only.
ALPH was present in the last common ancestor of eukaryotes, but most eukaryotes have either lost the enzyme, or use it exclusively outside the cytoplasm. The acceptance of mRNA as a substrate indicates that ALPHs, like bacterial ApaH, have a wide substrate range: the need to protect mRNAs from unregulated degradation is one possible explanation for the selection against the presence of cytoplasmic ALPH proteins in most eukaryotes. Kinetoplastida succeeded to exploit ALPH as their only or major mRNA decapping enzyme. 71 eukaryotic organisms outside the Kinetoplastid lineage have short ALPH proteins with cytoplasmic localisation predictions: whether these proteins are used as decapping enzymes in addition to Dcp2 or else have adapted to not accept mRNAs as a substrate, remains to be explored.
ApaH 样磷酸酶(ALPHs)源自细菌 ApaH 蛋白,已在所有真核超组中被发现。仅有两种这些蛋白被证明具有功能。我们已经表明,来自 Kinetoplastid 原生动物锥虫的 ApaH 样磷酸酶 ALPH1 是寄生虫的 mRNA 脱帽酶。在真核生物中,Dcp2 是主要的 mRNA 脱帽酶,而 ALPHs 的 mRNA 脱帽作用是前所未有的,但最近发现细菌 ApaH 蛋白可脱帽非传统的细菌 mRNA 帽。这些发现促使我们探索 ALPHs 的 mRNA 脱帽作用是否仅限于 Kinetoplastida,或者是否在真核生物中更为普遍。
我们使用新开发的基于 Python 的算法筛选了 827 个真核生物蛋白质组,以确定 ALPHs 的存在,并利用这些数据来描述该蛋白家族的系统发生分布、保守特征、附加结构域和预测的细胞内定位。对于大多数生物体,我们发现 ALPH 蛋白要么不存在(827 个生物体中的 495 个),要么预测其无细胞质定位(所有 ALPHs 的 73%),排除了其在 mRNA 脱帽中的作用。尽管如此,无细胞质定位的 ALPH 蛋白在体外具有 mRNA 脱帽活性。仅有 71 个非锥虫生物具有预测的细胞质定位的 ALPH 蛋白。然而,与锥虫生物不同的是,这些生物体还拥有 Dcp2 的同源物,与锥虫生物的 ALPH1 不同的是,这些 ALPH 蛋白非常短,仅包含催化结构域。
ALPH 存在于真核生物的最后共同祖先中,但大多数真核生物要么失去了该酶,要么仅在细胞质外使用它。接受 mRNA 作为底物表明,与细菌 ApaH 一样,ALPHs 具有广泛的底物范围:需要保护 mRNA 免受不受调控的降解,这可能是大多数真核生物中选择不具有细胞质 ALPH 蛋白的原因之一。锥虫生物成功地将 ALPH 作为其唯一或主要的 mRNA 脱帽酶加以利用。在锥虫生物谱系之外,有 71 个真核生物具有预测的细胞质定位的短 ALPH 蛋白:这些蛋白是否除了 Dcp2 之外还被用作脱帽酶,或者已经适应不接受 mRNA 作为底物,仍有待探索。