Suppr超能文献

乳腺癌患者的死亡原因:死亡证明与医疗档案之间的不一致及其对生存估计的影响。

Cause of death for patients with breast cancer: discordance between death certificates and medical files, and impact on survival estimates.

作者信息

Izci Hava, Tambuyzer Tim, Vandeven Jessica, Xicluna Jérôme, Wildiers Hans, Punie Kevin, Willers Nynke, Oldenburger Eva, Van Nieuwenhuysen Els, Berteloot Patrick, Smeets Ann, Nevelsteen Ines, Deblander Anne, De Schutter Harlinde, Neven Patrick, Silversmit Geert, Verdoodt Freija

机构信息

Department of Oncology, KU Leuven - University of Leuven, Herestraat 49 box 7003-06, B-3000, Leuven, Belgium.

Belgian Cancer Registry, Research Department, Brussels, Belgium.

出版信息

Arch Public Health. 2021 Jun 23;79(1):111. doi: 10.1186/s13690-021-00637-w.

Abstract

BACKGROUND

Registration and coding of cause of death is prone to error since determining the exact underlying condition leading directly to death is challenging. In this study, causes of death from the death certificates were compared to patients' medical files interpreted by experts at University Hospitals Leuven (UHL), to assess concordance between sources and its impact on cancer survival assessment.

METHODS

Breast cancer patients treated at UHL (2009-2014) (follow-up until December 31st 2016) were included in this study. Cause of death was obtained from death certificates and expert-reviewed medical files at UHL. Agreement was calculated using Cohen's kappa coefficient. Cause-specific survival (CSS) was calculated using the Kaplan-Meier method and the relative survival probability (RS) using the Ederer II and Pohar Perme method.

RESULTS

A total of 2862 patients, of whom 354 died, were included. We found an agreement of 84.7% (kappa-value of 0.69 (95% C.I.: 0.62-0.77)) between death certificates and medical files. Death certificates had 10.7% false positive and 4.5% false negative rates. However, five-year CSS and RS measures were comparable for both sources.

CONCLUSION

For breast cancer patients included in our study, fair agreement of cause of death was seen between death certificates and medical files with similar CSS and RS estimations.

摘要

背景

由于确定直接导致死亡的确切潜在病因具有挑战性,死亡原因的登记和编码容易出错。在本研究中,将死亡证明书中的死亡原因与鲁汶大学医院(UHL)的专家解读的患者病历进行比较,以评估数据源之间的一致性及其对癌症生存评估的影响。

方法

纳入在UHL接受治疗的乳腺癌患者(2009 - 2014年)(随访至2016年12月31日)。死亡原因来自UHL的死亡证明书和专家审核的病历。使用科恩kappa系数计算一致性。使用Kaplan - Meier方法计算特定病因生存率(CSS),使用Ederer II和Pohar Perme方法计算相对生存概率(RS)。

结果

共纳入2862例患者,其中354例死亡。我们发现死亡证明书和病历之间的一致性为84.7%(kappa值为0.69(95%置信区间:0.62 - 0.77))。死亡证明书的假阳性率为10.7%,假阴性率为4.5%。然而,两种数据源的五年CSS和RS测量结果具有可比性。

结论

对于我们研究中纳入的乳腺癌患者,死亡证明书和病历之间在死亡原因方面存在合理的一致性,CSS和RS估计值相似。

相似文献

2
Misclassification of breast cancer as cause of death in a service screening area.
Cancer Causes Control. 2009 Jul;20(5):533-8. doi: 10.1007/s10552-008-9261-3. Epub 2008 Nov 18.
3
Fair comparisons of cause-specific and relative survival by accounting for the systematic removal of patients from risk-sets.
Cancer Epidemiol. 2023 Oct;86:102408. doi: 10.1016/j.canep.2023.102408. Epub 2023 Aug 15.
4
Uniform and blinded cause of death verification of the NELSON lung cancer screening participants.
Lung Cancer. 2017 Sep;111:131-134. doi: 10.1016/j.lungcan.2017.07.018. Epub 2017 Jul 22.
6
8
Comparing causes of death of Hodgkin lymphoma and breast cancer patients between medical records and cause-of-death statistics.
Clin Epidemiol. 2018 Oct 16;10:1523-1531. doi: 10.2147/CLEP.S161359. eCollection 2018.
9
Comparing net survival estimators of cancer patients.
Stat Med. 2016 May 20;35(11):1866-79. doi: 10.1002/sim.6833. Epub 2015 Dec 28.
10
A comparison of relative and cause-specific survival by cancer site, age and time since diagnosis.
Int J Cancer. 2014 Jul 1;135(1):196-203. doi: 10.1002/ijc.28645. Epub 2013 Dec 9.

引用本文的文献

2
A scoping review on the errors in medical certification of the cause of death in India.
Indian J Med Res. 2024 Jul;160(1):11-21. doi: 10.25259/IJMR_498_23.
4
Causes of death in women with breast cancer: a risks and rates study on a population-based cohort.
Front Oncol. 2023 Nov 1;13:1270877. doi: 10.3389/fonc.2023.1270877. eCollection 2023.
6
Mortality among patients with low-grade follicular lymphoma: A binational retrospective analysis.
Cancer. 2022 Jul 1;128(13):2474-2482. doi: 10.1002/cncr.34221. Epub 2022 Apr 13.

本文引用的文献

1
Misclassification of the actual causes of death and its impact on analysis: A case study in non-small cell lung cancer.
Lung Cancer. 2019 Aug;134:16-24. doi: 10.1016/j.lungcan.2019.05.016. Epub 2019 May 16.
2
Improving the reporting of cancer-specific mortality and survival in research using cancer registry data.
Cancer Epidemiol. 2019 Apr;59:232-235. doi: 10.1016/j.canep.2019.02.004. Epub 2019 Mar 2.
3
The implementation of an automated coding system for cause-of-death statistics.
Inform Health Soc Care. 2020 Jan;45(1):1-14. doi: 10.1080/17538157.2018.1496092. Epub 2018 Aug 20.
4
7
Systematic review of statistics on causes of deaths in hospitals: strengthening the evidence for policy-makers.
Bull World Health Organ. 2014 Nov 1;92(11):807-16. doi: 10.2471/BLT.14.137935. Epub 2014 Sep 16.
9
A comparison of relative and cause-specific survival by cancer site, age and time since diagnosis.
Int J Cancer. 2014 Jul 1;135(1):196-203. doi: 10.1002/ijc.28645. Epub 2013 Dec 9.
10
Effect of misclassified underlying cause of death on survival estimates of colon and rectal cancer.
J Natl Cancer Inst. 2011 Jul 20;103(14):1130-3. doi: 10.1093/jnci/djr207. Epub 2011 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验