Suppr超能文献

具有维度依赖性光催化活性的多孔二维和三维共价有机框架在促进自由基开环聚合中的应用

Porous 2D and 3D Covalent Organic Frameworks with Dimensionality-Dependent Photocatalytic Activity in Promoting Radical Ring-Opening Polymerization.

作者信息

Wang Kaixuan, Kang Xing, Yuan Chen, Han Xing, Liu Yan, Cui Yong

机构信息

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Angew Chem Int Ed Engl. 2021 Aug 23;60(35):19466-19476. doi: 10.1002/anie.202107915. Epub 2021 Aug 3.

Abstract

Dimensionality is a fundamental parameter to modulate the properties of solid materials by tuning electronic structures. Covalent organic frameworks (COFs) are a prominent class of porous crystalline materials, but the study of dimensional dependence on their physicochemical properties is still lacking. Herein we illustrate photocatalytic performances of N,N-diaryl dihydrophenazine (PN)-based COFs are heavily dependent on the structural dimensionality. Six isostructural imine-bonded 2D-PN COFs and one 3D-PN COF were prepared. All can be heterogeneous photocatalysts to promote radical ring-opening polymerization of vinylcyclopropanes (VCPs), which typically produces polymers with a combination of linear (l) and cyclic (c) repeat units. The 2D-PN COFs have much higher catalytic activity than the 3D-PN COF, allowing the efficient synthesis of poly(VCPs) with controlled molecular weight, low dispersity and high l/c selectivity (up to 97 %). The improved performance can be ascribed to the 2D structure which has a larger internal surface area, more catalytically active sites, higher photosensitizing ability and photoinduced electron transfer efficiency.

摘要

维度是通过调整电子结构来调节固体材料性能的一个基本参数。共价有机框架(COF)是一类重要的多孔晶体材料,但关于其物理化学性质的维度依赖性研究仍较为缺乏。在此,我们表明基于N,N - 二芳基二氢吩嗪(PN)的COF的光催化性能在很大程度上依赖于结构维度。制备了六种同构的亚胺键合二维PN COF和一种三维PN COF。所有这些都可以作为多相光催化剂来促进乙烯基环丙烷(VCP)的自由基开环聚合,该反应通常生成具有线性(l)和环状(c)重复单元组合的聚合物。二维PN COF比三维PN COF具有更高的催化活性,能够高效合成具有可控分子量、低分散度和高l/c选择性(高达97%)的聚(VCP)。性能的提升可归因于二维结构具有更大的内表面积、更多的催化活性位点、更高的光敏能力和光致电子转移效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验