Suppr超能文献

结构方程建模中的分布加权最小二乘法。

Distributionally weighted least squares in structural equation modeling.

机构信息

Department of Psychology, University of California, Los Angeles.

出版信息

Psychol Methods. 2022 Aug;27(4):519-540. doi: 10.1037/met0000388. Epub 2021 Jun 24.

Abstract

n real data analysis with structural equation modeling, data are unlikely to be exactly normally distributed. If we ignore the non-normality reality, the parameter estimates, standard error estimates, and model fit statistics from normal theory based methods such as maximum likelihood (ML) and normal theory based generalized least squares estimation (GLS) are unreliable. On the other hand, the asymptotically distribution free (ADF) estimator does not rely on any distribution assumption but cannot demonstrate its efficiency advantage with small and modest sample sizes. The methods which adopt misspecified loss functions including ridge GLS (RGLS) can provide better estimates and inferences than the normal theory based methods and the ADF estimator in some cases. We propose a distributionally weighted least squares (DLS) estimator, and expect that it can perform better than the existing generalized least squares, because it combines normal theory based and ADF based generalized least squares estimation. Computer simulation results suggest that model-implied covariance based DLS (DLSM) provided relatively accurate and efficient estimates in terms of RMSE. In addition, the empirical standard errors, the relative biases of standard error estimates, and the Type I error rates of the Jiang-Yuan rank adjusted model fit test statistic (TJY) in DLSM were competitive with the classical methods including ML, GLS, and RGLS. The performance of DLSM depends on its tuning parameter a. We illustrate how to implement DLSM and select the optimal a by a bootstrap procedure in a real data example. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

在使用结构方程模型进行实际数据分析时,数据不太可能完全呈正态分布。如果我们忽略非正态性的现实,那么基于最大似然(ML)和正态理论广义最小二乘估计(GLS)等正态理论方法的参数估计、标准误估计和模型拟合统计量是不可靠的。另一方面,渐近无分布(ADF)估计器不依赖于任何分布假设,但在小样本和适度样本量的情况下,无法证明其效率优势。采用指定损失函数的方法,包括岭广义最小二乘(RGLS),在某些情况下可以提供比基于正态理论的方法和 ADF 估计器更好的估计值和推断。我们提出了一种分布加权最小二乘法(DLS)估计器,期望它比现有的广义最小二乘法表现更好,因为它结合了基于正态理论和 ADF 的广义最小二乘估计。计算机模拟结果表明,基于模型隐含协方差的 DLS(DLSM)在 RMSE 方面提供了相对准确和有效的估计。此外,在 DLSM 中,Jiang-Yuan 等级调整模型拟合检验统计量(TJY)的经验标准误差、标准误估计的相对偏差和 I 型错误率与包括 ML、GLS 和 RGLS 在内的经典方法具有竞争力。DLSM 的性能取决于其调整参数 a。我们通过一个实际数据示例中的引导程序过程说明了如何实施 DLSM 并选择最佳的 a。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验