可降解聚合物纳米颗粒与 T 淋巴细胞的共价和非共价偶联。
Covalent and Noncovalent Conjugation of Degradable Polymer Nanoparticles to T Lymphocytes.
机构信息
École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
University of Bern, Theodor Kocher Institute,Freiestrasse 1, CH-3000 Bern, Switzerland.
出版信息
Biomacromolecules. 2021 Aug 9;22(8):3416-3430. doi: 10.1021/acs.biomac.1c00488. Epub 2021 Jun 25.
Cells are attractive as carriers that can help to enhance control over the biodistribution of polymer nanomedicines. One strategy to use cells as carriers is based on the cell surface immobilization of the nanoparticle cargo. While a range of strategies can be used to immobilize nanoparticles on cell surfaces, only limited effort has been made to investigate the effect of these surface modification chemistries on cell viability and functional properties. This study has explored seven different approaches for the immobilization of poly(lactic acid) (PLA) nanoparticles on the surface of two different T lymphocyte cell lines. The cell lines used were human Jurkat T cells and CD4 T cells. The latter cells possess blood-brain barrier (BBB) migratory properties and are attractive for the development of cell-based delivery systems to the central nervous system (CNS). PLA nanoparticles were immobilized either via covalent active ester-amine, azide-alkyne cycloaddition, and thiol-maleimide coupling, or via noncovalent approaches that use lectin-carbohydrate, electrostatic, or biotin-NeutrAvidin interactions. The cell surface immobilization of the nanoparticles was monitored with flow cytometry and confocal microscopy. By tuning the initial nanoparticle/cell ratio, T cells can be decorated with up to ∼185 nanoparticles/cell as determined by confocal microscopy. The functional properties of the nanoparticle-decorated cells were assessed by evaluating their binding to ICAM-1, a key protein involved in the adhesion of CD4 T cells to the BBB endothelium, as well as in a two-chamber model in vitro BBB migration assay. It was found that the migratory behavior of CD4 T cells carrying carboxylic acid-, biotin-, or Wheat germ agglutinin (WGA)-functionalized nanoparticles was not affected by the presence of the nanoparticle payload. In contrast, however, for cells decorated with maleimide-functionalized nanoparticles, a reduction in the number of migratory cells compared to the nonmodified control cells was observed. Investigating and understanding the impact of nanoparticle-cell surface conjugation chemistries on the viability and properties of cells is important to further improve the design of cell-based nanoparticle delivery systems. The results of this study present a first step in this direction and provide first guidelines for the surface modification of T cells, in particular in view of their possible use for drug delivery to the CNS.
细胞作为载体具有吸引力,可帮助增强对聚合物纳米药物生物分布的控制。将细胞用作载体的一种策略是基于纳米颗粒货物在细胞表面的固定化。虽然可以使用多种策略将纳米颗粒固定在细胞表面上,但仅对这些表面修饰化学物质对细胞活力和功能特性的影响进行了有限的研究。本研究探索了七种不同的方法,用于将聚乳酸(PLA)纳米颗粒固定在两种不同的 T 淋巴细胞系表面上。使用的细胞系是人 Jurkat T 细胞和 CD4 T 细胞。后者具有血脑屏障(BBB)迁移特性,对于开发用于中枢神经系统(CNS)的基于细胞的递药系统很有吸引力。PLA 纳米颗粒通过共价活性酯-胺、叠氮化物-炔烃环加成和巯基-马来酰亚胺偶联,或者通过使用凝集素-碳水化合物、静电或生物素-NeutrAvidin 相互作用的非共价方法进行固定化。通过流式细胞术和共聚焦显微镜监测纳米颗粒在细胞表面的固定化。通过调整初始纳米颗粒/细胞比,可以用共聚焦显微镜测定高达约 185 个纳米颗粒/细胞对 T 细胞进行修饰。通过评估它们与 ICAM-1 的结合来评估修饰后的纳米颗粒的功能特性,ICAM-1 是 CD4 T 细胞与 BBB 内皮细胞粘附以及体外 BBB 迁移测定中两室模型中粘附的关键蛋白。结果发现,携带羧酸、生物素或麦胚凝集素(WGA)功能化纳米颗粒的 CD4 T 细胞的迁移行为不受纳米颗粒有效负载的影响。然而,与未修饰的对照细胞相比,用马来酰亚胺功能化的纳米颗粒修饰的细胞的迁移细胞数量减少。研究和了解纳米颗粒-细胞表面缀合化学对细胞活力和特性的影响对于进一步改进基于细胞的纳米颗粒递药系统的设计很重要。本研究的结果朝着这个方向迈出了第一步,并为 T 细胞的表面修饰提供了初步指导,特别是考虑到它们在向 CNS 递药方面的可能用途。