Hallab Jeannette C, Nim Hieu T, Stolper Julian, Chahal Gulrez, Waylen Lisa, Bolk Francesca, Elliott David A, Porrello Enzo, Ramialison Mirana
Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia.
Brief Funct Genomics. 2021 Jun 25. doi: 10.1093/bfgp/elab030.
Heart formation in the zebrafish involves a rapid, complex series of morphogenetic events in three-dimensional space that spans cardiac lineage specification through to chamber formation and maturation. This process is tightly orchestrated by a cardiac gene regulatory network (GRN), which ensures the precise spatio-temporal deployment of genes critical for heart formation. Alterations of the timing or spatial localisation of gene expression can have a significant impact in cardiac ontogeny and may lead to heart malformations. Hence, a better understanding of the cellular and molecular basis of congenital heart disease relies on understanding the behaviour of cardiac GRNs with precise spatiotemporal resolution. Here, we review the recent technical advances that have expanded our capacity to interrogate the cardiac GRN in zebrafish. In particular, we focus on studies utilising high-throughput technologies to systematically dissect gene expression patterns, both temporally and spatially during heart development.
斑马鱼的心脏形成涉及三维空间中一系列快速、复杂的形态发生事件,这些事件涵盖了从心脏谱系特化到腔室形成和成熟的过程。这个过程由心脏基因调控网络(GRN)严格编排,该网络确保了对心脏形成至关重要的基因在精确的时空上的部署。基因表达的时间或空间定位的改变会对心脏个体发育产生重大影响,并可能导致心脏畸形。因此,要更好地理解先天性心脏病的细胞和分子基础,就依赖于以精确的时空分辨率了解心脏GRN的行为。在这里,我们回顾了最近的技术进展,这些进展扩展了我们在斑马鱼中研究心脏GRN的能力。特别是,我们专注于利用高通量技术在心脏发育过程中系统地剖析基因表达模式的研究,包括时间和空间方面。