Niu Nan-Nan, Lu Lu, Peng Pan-Pan, Fu Zhi-Juan, Miao Dan, Zhou Ming, Noy Dror, Zhao Kai-Hong
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
MIGAL-Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel.
Plant J. 2021 Sep;107(5):1420-1431. doi: 10.1111/tpj.15389. Epub 2021 Jul 19.
The phycobilisomes (PBSs) of cyanobacteria and red-algae are unique megadaltons light-harvesting protein-pigment complexes that utilize bilin derivatives for light absorption and energy transfer. Recently, the high-resolution molecular structures of red-algal PBSs revealed how the multi-domain core-membrane linker (L ) specifically organizes the allophycocyanin subunits in the PBS's core. But, the topology of L in these structures was different than that suggested for cyanobacterial PBSs based on lower-resolution structures. Particularly, the model for cyanobacteria assumed that the Arm2 domain of L connects the two basal allophycocyanin cylinders, whereas the red-algal PBS structures revealed that Arm2 is partly buried in the core of one basal cylinder and connects it to the top cylinder. Here, we show by biochemical analysis of mutations in the apcE gene that encodes L , that the cyanobacterial and red-algal L topologies are actually the same. We found that removing the top cylinder linker domain in L splits the PBS core longitudinally into two separate basal cylinders. Deleting either all or part of the helix-loop-helix domain at the N-terminal end of Arm2, disassembled the basal cylinders and resulted in degradation of the part containing the terminal emitter, ApcD. Deleting the following 30 amino-acids loop severely affected the assembly of the basal cylinders, but further deletion of the amino-acids at the C-terminal half of Arm2 had only minor effects on this assembly. Altogether, the biochemical data are consistent with the red-algal L topology, suggesting that the PBS cores in cyanobacteria and red-algae assemble in the same way.
蓝藻和红藻的藻胆体(PBSs)是独特的兆道尔顿级光捕获蛋白 - 色素复合物,它们利用胆素衍生物进行光吸收和能量转移。最近,红藻PBSs的高分辨率分子结构揭示了多结构域核心 - 膜连接体(L)如何在PBS的核心中特异性地组织别藻蓝蛋白亚基。但是,这些结构中L的拓扑结构与基于低分辨率结构所推测的蓝藻PBSs的拓扑结构不同。特别是,蓝藻的模型假设L的Arm2结构域连接两个基部别藻蓝蛋白圆柱体,而红藻PBS结构显示Arm2部分埋在一个基部圆柱体的核心中并将其连接到顶部圆柱体。在这里,我们通过对编码L的apcE基因中的突变进行生化分析表明,蓝藻和红藻的L拓扑结构实际上是相同的。我们发现去除L中的顶部圆柱体连接结构域会将PBS核心纵向分裂成两个单独的基部圆柱体。删除Arm2 N末端的全部或部分螺旋 - 环 - 螺旋结构域会拆散基部圆柱体,并导致包含末端发射体ApcD的部分降解。删除接下来的30个氨基酸环会严重影响基部圆柱体的组装,但进一步删除Arm2 C末端一半的氨基酸对这种组装只有轻微影响。总之,生化数据与红藻L拓扑结构一致,表明蓝藻和红藻中的PBS核心以相同的方式组装。