The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada; Phialogics GmbH, Bettinastr. 30, 60325 Frankfurt am Main, Germany.
J Mol Biol. 2021 Sep 3;433(18):167115. doi: 10.1016/j.jmb.2021.167115. Epub 2021 Jun 24.
PDZ domains are key players in signalling pathways. These modular domains generally recognize short linear C-terminal stretches of sequences in proteins that organize the formation of complex multi-component assemblies. The development of new methodologies for the characterization of the molecular principles governing these interactions is critical to fully understand the functional diversity of the family and to elucidate biological functions for family members. Here, we applied an in vitro evolution strategy to explore comprehensively the capacity of PDZ domains for specific recognition of different amino acids at a key position in C-terminal peptide ligands. We constructed a phage-displayed library of the Erbin PDZ domain by randomizing the binding site and adjacent residues, which are all contained in helix α2, and we selected for variants binding to a panel of peptides representing all possible position residues. This approach generated insights into the basis for the common natural class I and II specificities, demonstrated an alternative basis for a rare natural class III specificity for Asp, and revealed a novel specificity for Arg that has not been reported in natural PDZ domains. A structure of a PDZ-peptide complex explained the minimum requirement for switching specificity from class I ligands containing Thr/Ser to class II ligands containing hydrophobic residues at position. A second structure explained the molecular basis for the specificity for ligands containing Arg. Overall, the evolved PDZ variants greatly expand our understanding of site specificities and the variants themselves may prove useful as building blocks for synthetic biology.
PDZ 结构域是信号通路中的关键分子。这些模块结构域通常识别蛋白质中 C 末端短线性序列的延伸,这些序列组织了复杂的多组分组装体的形成。开发用于描述这些相互作用的分子原理的新方法对于充分理解家族的功能多样性以及阐明家族成员的生物学功能至关重要。在这里,我们应用了一种体外进化策略,全面探索 PDZ 结构域对 C 末端肽配体中关键位置的不同氨基酸的特异性识别能力。我们通过随机化结合位点和包含在α2 螺旋中的相邻残基来构建 Erbin PDZ 结构域的噬菌体展示文库,我们选择了与代表所有可能位置残基的肽的变体结合。这种方法深入了解了常见的自然 I 类和 II 类特异性的基础,展示了一种替代的天然 III 类特异性的基础,该特异性对 Asp,以及揭示了一种在天然 PDZ 结构域中未报道的新型对 Arg 的特异性。PDZ-肽复合物的结构解释了从含有 Thr/Ser 的 I 类配体切换特异性到含有疏水性残基的 II 类配体的最小要求。第二个结构解释了含有 Arg 的配体特异性的分子基础。总的来说,进化的 PDZ 变体极大地扩展了我们对特异性的理解,变体本身可能证明在合成生物学中作为构建块很有用。