Suppr超能文献

基于埃洛石纳米管的具有高耐腐蚀性的界面涂层用于锌离子电池的阳极保护。

An interfacial coating with high corrosion resistance based on halloysite nanotubes for anode protection of zinc-ion batteries.

作者信息

Xu Peijie, Wang Chunyuan, Zhao Bingxin, Zhou Yi, Cheng Hongfei

机构信息

School of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China.

Beijing Golden Feather New Energy Technology Co., Ltd, Beijing 100089, China.

出版信息

J Colloid Interface Sci. 2021 Nov 15;602:859-867. doi: 10.1016/j.jcis.2021.06.057. Epub 2021 Jun 11.

Abstract

Aqueous zinc-ion batteries are recognized as one of the most potential neutral aqueous batteries because of the high energy density, high specific capacity, low cost, and low pollution. However, the applications of zinc-ion batteries are seriously limited by the capacity fading, easy-corrosion, side reaction, and hydrogen evolution. Herein, we report a uniform halloysite nanotubes (HNTs) coating which can guide Zn ions stripping/plating on the HNTs/Zn interfaces and protect the Zn anode. The HNTs coating significantly suppresses the corrosion of Zn anode and effectively reduces the hydrogen evolution and the formation of by-product. Furthermore, the HNTs-Zn anode exhibits lower resistance than bare Zn. Compared with the bare Zn anode batteries, HNTs-Zn/MnO batteries exhibit good capacity retention and can increase the discharge capacity to 79% at 3 C after 400 cycles. The novel design of interfacial coating based on halloysite nanotubes through electrophoretic deposition method provides a new way to fabricate economic and stable aqueous zinc-ion batteries.

摘要

水系锌离子电池因其高能量密度、高比容量、低成本和低污染,被认为是最具潜力的中性水系电池之一。然而,锌离子电池的应用受到容量衰减、易腐蚀、副反应和析氢等问题的严重限制。在此,我们报道了一种均匀的埃洛石纳米管(HNTs)涂层,它可以引导锌离子在HNTs/Zn界面上脱嵌/沉积,并保护锌负极。HNTs涂层显著抑制了锌负极的腐蚀,有效减少了析氢和副产物的形成。此外,HNTs-Zn负极的电阻低于裸锌。与裸锌负极电池相比,HNTs-Zn/MnO电池表现出良好的容量保持率,在400次循环后,在3 C倍率下放电容量可提高到79%。通过电泳沉积法基于埃洛石纳米管的界面涂层新设计,为制备经济稳定的水系锌离子电池提供了一种新方法。

相似文献

1
An interfacial coating with high corrosion resistance based on halloysite nanotubes for anode protection of zinc-ion batteries.
J Colloid Interface Sci. 2021 Nov 15;602:859-867. doi: 10.1016/j.jcis.2021.06.057. Epub 2021 Jun 11.
2
A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries.
J Colloid Interface Sci. 2021 Oct;599:467-475. doi: 10.1016/j.jcis.2021.04.113. Epub 2021 Apr 24.
4
Ion-Sieving Separator Functionalized by Natural Mineral Coating toward Ultrastable Zn Metal Anodes.
ACS Nano. 2024 Sep 17;18(37):25880-25892. doi: 10.1021/acsnano.4c09678. Epub 2024 Sep 5.
7
Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS-Coated Zn Anode.
ACS Appl Mater Interfaces. 2020 Jun 17;12(24):27249-27257. doi: 10.1021/acsami.0c06009. Epub 2020 Jun 3.
8
An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries.
Adv Sci (Weinh). 2021 Jun;8(11):e2100309. doi: 10.1002/advs.202100309. Epub 2021 Mar 30.
9
Low-Cost Aqueous Electrolyte with MBA Additives for Uniform and Stable Zinc Deposition.
ACS Appl Mater Interfaces. 2024 Jun 12;16(23):30580-30588. doi: 10.1021/acsami.4c05430. Epub 2024 Jun 1.
10
Superabsorbent starch protective layer modulates zinc anode interface for long-life aqueous zinc ion batteries.
J Colloid Interface Sci. 2025 Jan;677(Pt A):1029-1036. doi: 10.1016/j.jcis.2024.08.010. Epub 2024 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验