Bhaskar Yogendra, Su Xiaoquan, Xu Chenggang, Xu Jian
Single-Cell Center and CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
University of Chinese Academy of Sciences, Beijing, China.
Front Microbiol. 2021 Jun 9;12:673349. doi: 10.3389/fmicb.2021.673349. eCollection 2021.
In selective RNA processing and stabilization (SRPS) operons, stem-loops (SLs) located at the 3'-UTR region of selected genes can control the stability of the corresponding transcripts and determine the stoichiometry of the operon. Here, for such operons, we developed a computational approach named SLOFE (stem-loop free energy) that identifies the SRPS operons and predicts their transcript- and protein-level stoichiometry at the whole-genome scale using only the genome sequence the minimum free energy (Δ) of specific SLs in the intergenic regions within operons. As validated by the experimental approach of differential RNA-Seq, SLOFE identifies genome-wide SRPS operons in with 80% accuracy and reveals that the SRPS mechanism contributes to diverse cellular activities. Moreover, in the identified SRPS operons, SLOFE predicts the transcript- and protein-level stoichiometry, including those encoding cellulosome complexes, ATP synthases, ABC transporter family proteins, and ribosomal proteins. Its accuracy exceeds those of existing approaches in , , , and . The ability to identify genome-wide SRPS operons and predict their stoichiometry DNA sequence should facilitate studying the function and evolution of SRPS operons in bacteria.
在选择性RNA加工与稳定(SRPS)操纵子中,位于选定基因3'-UTR区域的茎环(SLs)可控制相应转录本的稳定性,并决定操纵子的化学计量。在此,针对此类操纵子,我们开发了一种名为SLOFE(茎环自由能)的计算方法,该方法仅利用基因组序列及操纵子内基因间区域特定SLs的最小自由能(Δ),在全基因组规模上识别SRPS操纵子并预测其转录本和蛋白质水平的化学计量。经差异RNA-Seq实验方法验证,SLOFE以80%的准确率识别全基因组范围内的SRPS操纵子,并揭示SRPS机制有助于多种细胞活动。此外,在已识别的SRPS操纵子中,SLOFE预测转录本和蛋白质水平的化学计量,包括那些编码纤维小体复合物、ATP合酶、ABC转运蛋白家族蛋白和核糖体蛋白的化学计量。其准确率超过了现有在[具体文献1]、[具体文献2]、[具体文献3]和[具体文献4]中的方法。仅根据DNA序列识别全基因组范围内的SRPS操纵子并预测其化学计量的能力,应有助于研究细菌中SRPS操纵子的功能和进化。