Suppr超能文献

应用 29MHz 经直肠微超声对多参数 MRI 检出 PI-RADS Ⅲ级病变患者进行前列腺癌风险分层:单中心分析。

The use of 29 MHz transrectal micro-ultrasound to stratify the prostate cancer risk in patients with PI-RADS III lesions at multiparametric MRI: A single institutional analysis.

机构信息

Department of Urology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.

Department of Urology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.

出版信息

Urol Oncol. 2021 Dec;39(12):832.e1-832.e7. doi: 10.1016/j.urolonc.2021.05.030. Epub 2021 Jun 26.

Abstract

INTRODUCTION

Magnetic Resonance Imaging (MRI) has emerged as the most accurate diagnostic tool, showing a high sensitivity in the diagnosis of clinically significant prostate cancer (csCaP). However only a minority of patients with a PI-RADS 3 lesion at multiparametric magnetic resonance imaging (MRI) are diagnosed with csCaP. The aim of the current study was to assess whether high resolution micro-ultrasound (microUS) could help in sub-stratifying the risk of csCaP in this specific population.

MATERIAL AND METHODS

We retrospectively analyzed the records of 111 consecutive patients scheduled for a prostate biopsy with at least 1 PI-RADS 3 lesions at MRI. We excluded patients with a PIRADS >3 lesion, even if they had a coexisting PIRADS 3 lesions. MicroUS was performed in all patients before prostate biopsy by an operator blind to MRI results. The Prostate Risk Identification using MicroUS (PRI-MUS) protocol was used to assess the risk of CaP and csCaP. All patients received both targeted and systematic biopsies. The primary endpoint was to determine the diagnostic accuracy of microUS in detection of csCaP in patients with a PI-RADS 3 lesion at MRI. Specifically, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of microUS were determined. Multivariable logistic regression models (MLRMs) were fitted to identify predictors of CaP. The diagnostic accuracy was reported as area under the receiver operator characteristic (ROC) curve.

RESULTS

Overall, 43 patients (38.7%) harboured CaP and 22 (20%) csCaP. MicroUS showed a high sensitivity and negative predictive value (100%), while its specificity and positive predictive value were 33.7% and 27.2%, respectively. Among patients without lesions at microUS, 25 (83.3%) did not harbour CaP, while 5 (16.7%) patients were diagnosed with a Gleason score 6 CaP, with no patients harbouring csCaP. Using microUS, the csCaP detection would have remained 100%, while reducing the detection of insignificant CaP of a 23.8% extent (n = 5). In MLRMs, lesion identified at microUS and continuously-coded PSAd were independent predictors of CaP. The accuracy of a model including PRI-MUS score, digital rectal examination (DRE), PSA density, age and family history was 0.744 (95% CI: 0.645 - 0.843).

CONCLUSION

In our single-institutional retrospective study, microUS was potentially capable to stratify the presence of CaP in patients with an equivocal MRI. Further prospective studies on larger populations are needed to validate our results.

摘要

介绍

磁共振成像(MRI)已成为最准确的诊断工具,在诊断临床上有意义的前列腺癌(csCaP)方面显示出很高的灵敏度。然而,在多参数磁共振成像(MRI)中,只有少数具有 PI-RADS 3 病变的患者被诊断为 csCaP。本研究旨在评估高分辨率微超声(microUS)是否可以帮助对该特定人群中 csCaP 的风险进行分层。

材料与方法

我们回顾性分析了 111 例连续接受前列腺活检的患者的记录,这些患者在 MRI 上至少有 1 个 PI-RADS 3 病变。我们排除了 PI-RADS>3 病变的患者,即使他们同时存在 PI-RADS 3 病变。所有患者在前列腺活检前均由一位对 MRI 结果不知情的操作者进行 microUS 检查。使用前列腺风险识别微超声(PRI-MUS)方案评估 CaP 和 csCaP 的风险。所有患者均接受靶向和系统活检。主要终点是确定 MRI 上 PI-RADS 3 病变患者中 microUS 检测 csCaP 的诊断准确性。具体而言,确定了 microUS 检测 csCaP 的灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV)。拟合多变量逻辑回归模型(MLRMs)以确定 CaP 的预测因子。诊断准确性作为接收器操作特征(ROC)曲线下的面积报告。

结果

总体而言,43 名患者(38.7%)患有 CaP,22 名患者(20%)患有 csCaP。MicroUS 显示出很高的灵敏度和阴性预测值(100%),而特异性和阳性预测值分别为 33.7%和 27.2%。在没有 microUS 病变的患者中,25 名(83.3%)未患有 CaP,而 5 名(16.7%)患者被诊断为 Gleason 评分 6 CaP,无患者患有 csCaP。使用 microUS,csCaP 的检测率将保持 100%,同时将检测到的无意义 CaP 的比例降低 23.8%(n=5)。在 MLRMs 中,microUS 识别的病变和连续编码的 PSA 密度是 CaP 的独立预测因子。包括 PRI-MUS 评分、直肠指检(DRE)、PSA 密度、年龄和家族史的模型的准确性为 0.744(95%CI:0.645-0.843)。

结论

在我们的单中心回顾性研究中,microUS 有可能对 MRI 结果不确定的患者中 CaP 的存在进行分层。需要进一步对更大的人群进行前瞻性研究以验证我们的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验