Wang Rui, Feng Yi, Zhong Yunqian, Zou Yanzhao, Yang Mingjun, Liu Yucheng, Zhou Ying
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
Langmuir. 2021 Jul 13;37(27):8232-8239. doi: 10.1021/acs.langmuir.1c00945. Epub 2021 Jun 30.
Emulsion poses a greater challenge for the remediation of oily wastewater, which can be effectively resolved by the metal-organic framework of MIL-100(Fe). The formula FeO(HO)(OH) (BTC) pronounces that MIL-100(Fe) suffers from an intrinsic defect of less charged atoms, which limits its demulsification performance for oil-water separation. Herein, cations of the ionic liquid (1-allyl-3-methylimidazolium, Amim) were encapsulated in the micropore of MIL-100(Fe) in situ to increase the positive charge density of MIL-100(Fe). Zeta potential demonstrated that the encapsulation of Amim increased the positive charge amount of MIL-100(Fe). N probe isothermal adsorption/desorption and spectral measurements (X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflection spectroscopy, and attenuated total-reflectance infrared spectroscopy) revealed the host-guest interactions of π···Fe complexation and π···cation electrostatic attraction between Amim and MIL-100(Fe) for the composite materials. Amim encapsulation greatly enhanced the demulsification performance of MIL-100(Fe) for oil-in-water (O/W) emulsion stabilized by sodium dodecyl sulfate. Amim-encapsulated MIL-100(Fe) with an Amim/Fe molar ratio of 1:1 [Amim@MIL-100(Fe)-3:3] showed a demulsification efficiency (DE) of 94% within 30 s, compared with MIL-100(Fe) within 30 min. The maximum DE of Amim@MIL-100(Fe)-3:3 was found to be more than 98% within 5 min. The DE lost by MIL-100(Fe) at the third run decreased from 36 to 17% after encapsulating Amim. The analysis of surface charge and interfacial tension implied a demulsification mechanism of capturing-fusion, which could be promoted by the greater electrostatic attraction. Finally, the role of Amim on the outstanding demulsification performance by Amim-encapsulated MIL-100(Fe) could be explained by the enhanced nonbonded interaction of electrostatic attraction and van der Waals based on the molecular dynamics simulation.
乳液对含油废水的处理提出了更大的挑战,而MIL-100(Fe)金属有机框架可以有效解决这一问题。化学式FeO(HO)(OH) (BTC)表明MIL-100(Fe)存在带电原子较少的固有缺陷,这限制了其油水分离的破乳性能。在此,将离子液体(1-烯丙基-3-甲基咪唑鎓,Amim)的阳离子原位封装在MIL-100(Fe)的微孔中,以增加MIL-100(Fe)的正电荷密度。zeta电位表明,Amim的封装增加了MIL-100(Fe)的正电荷量。N探针等温吸附/解吸和光谱测量(X射线光电子能谱、紫外可见漫反射光谱和衰减全反射红外光谱)揭示了复合材料中Amim与MIL-100(Fe)之间π···Fe络合和π···阳离子静电吸引的主客体相互作用。Amim封装大大提高了MIL-100(Fe)对由十二烷基硫酸钠稳定的水包油(O/W)乳液的破乳性能。Amim/Fe摩尔比为1:1的Amim封装的MIL-100(Fe) [Amim@MIL-100(Fe)-3:3]在30秒内的破乳效率(DE)为94%,而MIL-100(Fe)在30分钟内才能达到这一效率。发现Amim@MIL-100(Fe)-3:3在5分钟内的最大DE超过98%。在封装Amim后,MIL-100(Fe)在第三次运行时损失的DE从36%降至17%。表面电荷和界面张力分析暗示了一种捕获-融合的破乳机制,这种机制可以通过更大的静电吸引力来促进。最后,基于分子动力学模拟,静电吸引和范德华力增强的非键相互作用可以解释Amim对Amim封装的MIL-100(Fe)出色破乳性能的作用。