Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil.
Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil; Laboratório de Virologia de Insetos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil.
Comp Biochem Physiol Part D Genomics Proteomics. 2021 Sep;39:100866. doi: 10.1016/j.cbd.2021.100866. Epub 2021 Jun 16.
Type 2 Diabetes mellitus (T2DM) is a multifactorial and polygenic disorder with the molecular bases still idiopathic. Experimental analyses and tests are quite limited upon human samples due to the access, variability of patient's conditions, and the size and complexity of the genome. Therefore, high-sugar diet exposure is commonly used for modeling T2DM in non-human animals, which includes invertebrate organisms like the fruit fly Drosophila melanogaster. Interestingly, high-sugar diet (HSD) induces delayed time for pupation and reduced viability in fruit fly larvae hatched from a 30% sucrose-containing medium (HSD-30%). Here we carried out an mRNA-deep sequencing study to identify differentially transcribed genes in adult fruit fly hatched and reared from an HSD-30%. Seven days after hatching, flies reared on control and HSD-30% were used to glucose and triglyceride level measurements and RNA extraction for sequencing. Remarkably, glucose levels were about 2-fold higher than the control group in fruit flies exposed to HSD-30%, whereas triglycerides levels increased 1.7-fold. After RNA-sequencing, we found that 13.5% of the genes were differentially transcribed in the dyslipidemic and hyperglycaemic insects. HSD-30% up-regulated genes involved in ribosomal biogenesis (e.g. dTOR, ERK and dS6K) and down-regulated genes involved in energetic process (e.g. Pfk, Gapdh1, and Pyk from pyruvate metabolism; kdn, Idh and Mdh2 from the citric acid cycle; ATPsynC and ATPsynẞ from ATP synthesis) and insect development. We found a remarkable down-regulation for Actin (Act88F) that likely impairs muscle development. Moreover, HSD-30% up-regulated both the insulin-like peptides 7 and 8 and down-regulated the insulin receptor substrate p53, isoform A and insulin-like peptide 6 genes, whose functional products are insulin signaling markers. All these features pointed together to a tightly correlation of the T2DM-like phenotype modeled by the D. melanogaster and an intricate array of phenomena, which includes energetic processes, muscle development, and ribosomal synthesis as that observed for the human pathology.
2 型糖尿病(T2DM)是一种多因素和多基因疾病,其分子基础仍然是特发性的。由于获取、患者病情的可变性以及基因组的大小和复杂性,对人类样本进行实验分析和测试非常有限。因此,高糖饮食暴露通常用于在非人类动物中模拟 T2DM,其中包括无脊椎动物,如黑腹果蝇果蝇。有趣的是,高糖饮食(HSD)会导致从含 30%蔗糖的培养基中孵化的果蝇幼虫化蛹时间延迟和存活率降低(HSD-30%)。在这里,我们进行了 mRNA 深度测序研究,以鉴定从 HSD-30% 孵化和饲养的成年果蝇中转录差异的基因。孵化后 7 天,用控制组和 HSD-30% 饲养的果蝇用于葡萄糖和甘油三酯水平测量和 RNA 提取用于测序。值得注意的是,暴露于 HSD-30%的果蝇的葡萄糖水平比对照组高约 2 倍,而甘油三酯水平增加了 1.7 倍。在 RNA 测序后,我们发现 13.5%的基因在血脂异常和高血糖昆虫中转录差异。HSD-30%上调核糖体生物发生(如 dTOR、ERK 和 dS6K)相关基因,并下调参与能量代谢(如丙酮酸代谢中的 Pfk、Gapdh1 和 Pyk;柠檬酸循环中的 kdn、Idh 和 Mdh2;ATP 合成中的 ATPsynC 和 ATPsynẞ)和昆虫发育的基因。我们发现肌动蛋白(Act88F)显著下调,可能损害肌肉发育。此外,HSD-30%上调胰岛素样肽 7 和 8,下调胰岛素受体底物 p53、同工型 A 和胰岛素样肽 6 基因,其功能产物是胰岛素信号标志物。所有这些特征都表明,黑腹果蝇模拟的 T2DM 样表型与包括能量代谢、肌肉发育和核糖体合成在内的一系列复杂现象之间存在紧密的相关性,这些现象与人类病理学观察到的情况一致。