Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.
Department of Forensic Psychiatry, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
Drug Alcohol Depend. 2021 Sep 1;226:108850. doi: 10.1016/j.drugalcdep.2021.108850. Epub 2021 Jun 24.
Recent research has identified higher prevalence of offending behavior in patients with comorbid schizophrenia spectrum disorder (SSD) and substance use disorder (SUD) compared to patients with SSD only and to the general population. However, findings on the subgroup of patients with SUD, SSD and offending behavior in forensic psychiatric care are scarce and inconsistent. The present study used machine learning to uncover more detailed characteristics of offender patients in forensic psychiatric care with comorbid SSD and SUD.
Using machine learning algorithms, 370 offender patients (91.6 % male, mean age of M = 34.1, SD = 10.2) and 558 variables were explored in order to build three models to differentiate between no substance use disorder, cannabis use disorder and any other substance use disorder. To counteract the risk of overfitting, the dataset was split, employing variable filtering, machine learning model building and selection embedded in a nested resampling approach on one subset. The best model was then selected and validated on the second data subset.
Distinguishing between SUD vs. no drug use disorder yielded models with an AUC of 70 and 78. Variables assignable to demographics, social disintegration, antisocial behavior and illness were identified as most influential for the distinction. The model comparing cannabis use disorder with other substance use disorders provided no significant differences.
From a clinical perspective, offender patients suffering from schizophrenia spectrum and comorbid substance use disorder seem particularly challenging to treat, but initial differences in psychopathology will dissipate over inpatient treatment. Our data suggest that offender patients may benefit from appropriate treatment that focuses on illicit drug abuse to reduce criminal behavior and improve social integration.
最近的研究表明,与仅患有精神分裂症谱系障碍(SSD)的患者和普通人群相比,患有共病 SSD 和物质使用障碍(SUD)的患者的犯罪行为发生率更高。然而,在法医精神病学护理中,关于 SUD、SSD 和犯罪行为亚组患者的研究结果很少且不一致。本研究使用机器学习方法揭示法医精神病学护理中患有共病 SSD 和 SUD 的犯罪患者的更详细特征。
使用机器学习算法,研究了 370 名犯罪患者(91.6%为男性,平均年龄 M = 34.1,SD = 10.2)和 558 个变量,以建立三个模型来区分无物质使用障碍、大麻使用障碍和任何其他物质使用障碍。为了降低过度拟合的风险,数据集被分割,采用变量筛选、机器学习模型构建和选择,嵌入嵌套重采样方法的一个子集。然后,在第二个数据子集上选择和验证最佳模型。
区分 SUD 与无药物使用障碍的模型 AUC 分别为 70 和 78。可归因于人口统计学、社会解体、反社会行为和疾病的变量被确定为区分的最主要因素。比较大麻使用障碍与其他物质使用障碍的模型没有显著差异。
从临床角度来看,患有精神分裂症谱系和共病物质使用障碍的犯罪患者似乎特别难以治疗,但精神病学上的初始差异在住院治疗过程中会逐渐消失。我们的数据表明,犯罪患者可能受益于专注于非法药物滥用的适当治疗,以减少犯罪行为并提高社会融合。