Suppr超能文献

通过顺序暴露氧气和氮气等离子体对微纳米原纤化纤维素薄膜进行各向同性和各向异性蚀刻,以调节其在结晶区和非晶区的润湿性。

Iso- and Anisotropic Etching of Micro Nanofibrillated Cellulose Films by Sequential Oxygen and Nitrogen Gas Plasma Exposure for Tunable Wettability on Crystalline and Amorphous Regions.

作者信息

Dimić-Mišić Katarina, Kostić Mirjana, Obradović Bratislav, Kuraica Milorad, Kramar Ana, Imani Monireh, Gane Patrick

机构信息

Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto, 00076 Helsinki, Finland.

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia.

出版信息

Materials (Basel). 2021 Jun 25;14(13):3571. doi: 10.3390/ma14133571.

Abstract

The surface of cellulose films, obtained from micro nanofibrillated cellulose produced with different enzymatic pretreatment digestion times of refined pulp, was exposed to gas plasma, resulting in a range of surface chemical and morphological changes affecting the mechanical and surface interactional properties. The action of separate and dual exposure to oxygen and nitrogen cold dielectric barrier discharge plasma was studied with respect to the generation of roughness (confocal laser and atomic force microscopy), nanostructural and chemical changes on the cellulose film surface, and their combined effect on wettability. Elemental analysis showed that with longer enzymatic pretreatment time the wetting response was sensitive to the chemical and morphological changes induced by both plasma gases, but distinctly oxygen plasma was seen to induce much greater morphological change while nitrogen plasma contributed more to chemical modification of the film surface. In this novel study, it is shown that exposure to oxygen plasma, subsequently followed by exposure to nitrogen plasma, leads first to an increase in wetting, and second to more hydrophobic behaviour, thus improving, for example, suitability for printing using polar functional inks or providing film barrier properties, respectively.

摘要

从经过不同酶预处理消化时间的精制纸浆生产的微纳纤化纤维素中获得的纤维素膜表面,经过气体等离子体处理,导致一系列表面化学和形态变化,影响了机械性能和表面相互作用性能。研究了单独和双重暴露于氧气和氮气冷介质阻挡放电等离子体的作用,涉及粗糙度的产生(共聚焦激光和原子力显微镜)、纤维素膜表面的纳米结构和化学变化,以及它们对润湿性的综合影响。元素分析表明,随着酶预处理时间的延长,润湿性响应对两种等离子体气体引起的化学和形态变化敏感,但明显可见氧气等离子体引起的形态变化更大,而氮气等离子体对膜表面的化学改性贡献更大。在这项新颖的研究中,结果表明,先暴露于氧气等离子体,随后再暴露于氮气等离子体,首先会导致润湿性增加,其次会导致更疏水的行为,从而分别提高例如使用极性功能油墨进行印刷的适用性或提供膜阻隔性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e599/8269647/c5b027872c43/materials-14-03571-g001.jpg

相似文献

2
Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.
ACS Appl Mater Interfaces. 2013 Aug 14;5(15):7352-9. doi: 10.1021/am401700n. Epub 2013 Jul 22.
3
Facile chemo-refining approach for production of micro-nanofibrillated cellulose from bleached mixed hardwood pulp to improve paper quality.
Carbohydr Polym. 2020 Jun 15;238:116186. doi: 10.1016/j.carbpol.2020.116186. Epub 2020 Mar 19.
4
Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO₂/PET film for biomedical application.
Mater Sci Eng C Mater Biol Appl. 2014 Mar 1;36:309-19. doi: 10.1016/j.msec.2013.12.018. Epub 2013 Dec 18.
5
Surface Modification of a Regenerated Cellulose Film Using Low-Pressure Plasma Treatment with Various Reactive Gases.
ACS Omega. 2022 Nov 17;7(48):44085-44092. doi: 10.1021/acsomega.2c05499. eCollection 2022 Dec 6.
7
Microbubble-enhanced dielectric barrier discharge pretreatment of microcrystalline cellulose.
Biomass Bioenergy. 2018 Nov;118:46-54. doi: 10.1016/j.biombioe.2018.08.005.
8
Improving gelatin-based emulsion films with cold plasma using different gases.
Food Sci Nutr. 2020 Oct 18;8(12):6487-6496. doi: 10.1002/fsn3.1939. eCollection 2020 Dec.
9
Preparation of acetylated nanofibrillated cellulose from corn stalk microcrystalline cellulose and its reinforcing effect on starch films.
Int J Biol Macromol. 2018 May;111:959-966. doi: 10.1016/j.ijbiomac.2018.01.056. Epub 2018 Jan 10.
10
Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions.
Biomacromolecules. 2008 Apr;9(4):1273-82. doi: 10.1021/bm701317k. Epub 2008 Feb 29.

本文引用的文献

2
Treatment of Nanocellulose by Submerged Liquid Plasma for Surface Functionalization.
Nanomaterials (Basel). 2018 Jun 26;8(7):467. doi: 10.3390/nano8070467.
3
Production of cellulose nanofibers using phenolic enhanced surface oxidation.
Carbohydr Polym. 2017 Oct 15;174:120-127. doi: 10.1016/j.carbpol.2017.06.058. Epub 2017 Jun 16.
4
Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings.
Carbohydr Polym. 2017 Aug 15;170:160-165. doi: 10.1016/j.carbpol.2017.04.082. Epub 2017 Apr 26.
6
Unconventional Pretreatment of Lignocellulose with Low-Temperature Plasma.
ChemSusChem. 2017 Jan 10;10(1):14-31. doi: 10.1002/cssc.201601381. Epub 2016 Dec 27.
7
Use of nanocellulose in printed electronics: a review.
Nanoscale. 2016 Jul 21;8(27):13131-54. doi: 10.1039/c6nr03054h. Epub 2016 Jun 27.
8
A gravure printed antenna on shape-stable transparent nanopaper.
Nanoscale. 2014 Aug 7;6(15):9110-5. doi: 10.1039/c4nr02036g.
9
Structural modification of lignin and characterization of pretreated wheat straw by ozonation.
J Agric Food Chem. 2013 Apr 24;61(16):3916-25. doi: 10.1021/jf4001988. Epub 2013 Apr 12.
10
Recyclable organic solar cells on cellulose nanocrystal substrates.
Sci Rep. 2013;3:1536. doi: 10.1038/srep01536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验