Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China.
Molecules. 2021 Jun 24;26(13):3870. doi: 10.3390/molecules26133870.
Banana is a major fruit crop throughout the world with abundant lignocellulose in the pseudostem and rachis residues for biofuel production. In this study, we collected a total of 11 pseudostems and rachis samples that were originally derived from different genetic types and ecological locations of banana crops and then examined largely varied edible carbohydrates (soluble sugars, starch) and lignocellulose compositions. By performing chemical (HSO, NaOH) and liquid hot water (LHW) pretreatments, we also found a remarkable variation in biomass enzymatic saccharification and bioethanol production among all banana samples examined. Consequently, this study identified a desirable banana (Refen1, subgroup Pisang Awak) crop containing large amounts of edible carbohydrates and completely digestible lignocellulose, which could be combined to achieve the highest bioethanol yields of 31-38% (% dry matter), compared with previously reported ones in other bioenergy crops. Chemical analysis further indicated that the cellulose CrI and lignin G-monomer should be two major recalcitrant factors affecting biomass enzymatic saccharification in banana pseudostems and rachis. Therefore, this study not only examined rich edible carbohydrates for food in the banana pseudostems but also detected digestible lignocellulose for bioethanol production in rachis tissue, providing a strategy applicable for genetic breeding and biomass processing in banana crops.
香蕉是一种全球主要的水果作物,其假茎和穗轴残留物富含木质纤维素,可用于生物燃料生产。在本研究中,我们共收集了 11 个假茎和穗轴样本,它们最初来自香蕉作物的不同遗传类型和生态位,然后我们检测了大量不同的可食用碳水化合物(可溶性糖、淀粉)和木质纤维素组成。通过进行化学(HSO、NaOH)和液热水(LHW)预处理,我们还发现所有检测到的香蕉样本在生物质酶解和生物乙醇生产方面存在显著差异。因此,本研究鉴定出一种理想的香蕉(Refen1,Pisang Awak 亚群)作物,其含有大量可食用碳水化合物和完全可消化的木质纤维素,与其他生物能源作物之前报道的相比,可结合实现最高 31-38%(干物质%)的生物乙醇产量。化学分析进一步表明,纤维素 CrI 和木质素 G-单体可能是影响香蕉假茎和穗轴生物质酶解的两个主要抗性因素。因此,本研究不仅检测了香蕉假茎中丰富的可食用碳水化合物用于食品,还检测了穗轴组织中可消化的木质纤维素用于生物乙醇生产,为香蕉作物的遗传育种和生物质加工提供了一种可行的策略。