Low Kean Ong, Johar Mahzan, Israr Haris Ahmad, Gan Khong Wui, Rahimian Koloor Seyed Saeid, Petrů Michal, Wong King Jye
School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia.
Centre for Advanced Materials and Green Technology, Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang 75450, Melaka, Malaysia.
Polymers (Basel). 2021 Jun 6;13(11):1881. doi: 10.3390/polym13111881.
This paper studies the influence of displacement rate on mode II delamination of unidirectional carbon/epoxy composites. End-notched flexure test is performed at displacement rates of 1, 10, 100 and 500 mm/min. Experimental results reveal that the mode II fracture toughness increases with the displacement, with a maximum increment of 45% at 100 mm/min. In addition, scanning electron micrographs depict that fiber/matrix interface debonding is the major damage mechanism at 1 mm/min. At higher speeds, significant matrix-dominated shear cusps are observed contributing to higher . Besides, it is demonstrated that the proposed rate-dependent model is able to fit the experimental data from the current study and the open literature generally well. The mode II fracture toughness measured from the experiment or deduced from the proposed model can be used in the cohesive element model to predict failure. Good agreement is found between the experimental and numerical results, with a maximum difference of 10%. The numerical analyses indicate crack jump occurs suddenly after the peak load is attained, which leads to the unstable crack propagation seen in the experiment.
本文研究了位移速率对单向碳/环氧复合材料II型分层的影响。在1、10、100和500毫米/分钟的位移速率下进行了端部切口弯曲试验。实验结果表明,II型断裂韧性随位移增加,在100毫米/分钟时最大增量为45%。此外,扫描电子显微镜照片显示,在1毫米/分钟时,纤维/基体界面脱粘是主要的损伤机制。在较高速度下,观察到显著的基体主导的剪切尖峰导致更高的[此处原文缺失相关内容]。此外,结果表明所提出的速率相关模型能够较好地拟合当前研究和公开文献中的实验数据。从实验测量或从所提出模型推导得到的II型断裂韧性可用于粘结单元模型来预测失效。实验结果与数值结果吻合良好,最大差异为10%。数值分析表明,在达到峰值载荷后裂纹突然跳跃,这导致了实验中观察到的不稳定裂纹扩展。