Kolano-Burian Aleksandra, Zackiewicz Przemyslaw, Grabias Agnieszka, Wojcik Anna, Maziarz Wojciech, Szlezynger Maciej, Wlodarczyk Patryk, Kowalczyk Maciej, Hawelek Lukasz
Lukasiewicz Research Network-Institute of Non-Ferrous Metals, 5 Sowinskiego, 44-100 Gliwice, Poland.
Lukasiewicz Research Network-Institute of Microelectronics and Photonics, al. Lotnikow 32/46, 02-668 Warszawa, Poland.
Materials (Basel). 2021 Jun 21;14(12):3433. doi: 10.3390/ma14123433.
In the present work, we investigated in detail the thermal/crystallization behavior and magnetic properties of materials with FeCoNbBP (x = 0, 5, 10, 15 and 20 at.%) composition. The amorphous ribbons were manufactured on a semi-industrial scale by the melt-spinning technique. The subsequent nanocrystallization processes were carried out under different conditions (with/without magnetic field). The comprehensive studies have been carried out using differential scanning calorimetry, X-ray diffractometry, transmission electron microscopy, hysteresis loop analyses, vibrating sample magnetometry and Mössbauer spectroscopy. Moreover, the frequency (up to 300 kHz) dependence of power losses and permeability at a magnetic induction up to 0.9 T was investigated. On the basis of some of the results obtained, we calculated the values of the activation energies and the induced magnetic anisotropies. The X-ray diffraction results confirm the surface crystallization effect previously observed for phosphorous-containing alloys. The in situ microscopic observations of crystallization describe this process in detail in accordance with the calorimetry results. Furthermore, the effect of Co content on the phase composition and the influence of annealing in an external magnetic field on magnetic properties, including the orientation of the magnetic spins, have been studied using various magnetic techniques. Finally, nanocrystalline FeCoNbBP cores were prepared after transverse thermo-magnetic heat treatment and installed in industrially available portable heating equipment.
在本工作中,我们详细研究了具有FeCoNbBP(x = 0、5、10、15和20原子百分比)成分的材料的热/结晶行为和磁性能。通过熔体纺丝技术在半工业规模上制造非晶带材。随后的纳米晶化过程在不同条件下(有/无磁场)进行。使用差示扫描量热法、X射线衍射法、透射电子显微镜、磁滞回线分析、振动样品磁强计和穆斯堡尔谱进行了全面研究。此外,研究了在高达0.9 T的磁感应强度下功率损耗和磁导率对频率(高达300 kHz)的依赖性。基于获得的一些结果,我们计算了活化能和感应磁各向异性的值。X射线衍射结果证实了先前在含磷合金中观察到的表面结晶效应。结晶过程的原位微观观察根据量热法结果详细描述了这一过程。此外,使用各种磁性技术研究了Co含量对相组成的影响以及外部磁场退火对磁性能的影响,包括磁自旋的取向。最后,在进行横向热磁热处理后制备了纳米晶FeCoNbBP磁芯,并将其安装在工业上可用的便携式加热设备中。