Suppr超能文献

用于增强电致变色性能的普鲁士蓝与碳点杂化物

Prussian Blue and Carbon-Dot Hybrids for Enhanced Electrochromic Performance.

作者信息

Chu Jia, Cheng Yaping, Li Xue, Yang Fan, Xiong Shanxin, Zhang Zhao

机构信息

Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.

出版信息

Materials (Basel). 2021 Jun 9;14(12):3166. doi: 10.3390/ma14123166.

Abstract

In this study, Prussian blue@Carbon-dot (PB@C-dot) hybrids have been developed by one-step hydrothermal method. The incorporation of C-dots into Prussian blue thin film as a way of improving its electrochromic performance was investigated. The structure of the PB@C-dot hybrid was characterized through X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The electrochromic properties showed that incorporation of 10 mL C-dots into the film showed higher optical contrast of 1.6 and superior coloration/bleaching response of 10 and 3 s. It is proposed that the C-dots component used in the construction of the PB@C-dot hybrid plays a key role to achieve superior electrochromic performance.

摘要

在本研究中,通过一步水热法制备了普鲁士蓝@碳点(PB@C-dot)杂化物。研究了将碳点掺入普鲁士蓝薄膜以改善其电致变色性能的方法。通过X射线衍射、拉曼光谱和扫描电子显微镜对PB@C-dot杂化物的结构进行了表征。电致变色性能表明,在薄膜中掺入10 mL碳点时,光学对比度更高,为1.6,着色/褪色响应更优,分别为10 s和3 s。研究表明,用于构建PB@C-dot杂化物的碳点组分在实现优异的电致变色性能方面起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91cb/8227488/a1c245da4cc0/materials-14-03166-g001.jpg

相似文献

1
Prussian Blue and Carbon-Dot Hybrids for Enhanced Electrochromic Performance.
Materials (Basel). 2021 Jun 9;14(12):3166. doi: 10.3390/ma14123166.
2
Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films.
Nanoscale. 2015 Oct 28;7(40):17088-95. doi: 10.1039/c5nr04458h. Epub 2015 Sep 30.
3
Novel High-Performance and Low-Cost Electrochromic Prussian White Film.
ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8157-8162. doi: 10.1021/acsami.1c22050. Epub 2022 Feb 2.
4
Homogeneous and Nanogranular Prussian Blue to Enable Long-Term-Stable Electrochromic Devices.
ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17745-17756. doi: 10.1021/acsami.3c17551. Epub 2024 Mar 25.
7
A Low Driving-Voltage Hybrid-Electrolyte Electrochromic Window with Only Ferreous Redox Couples.
Nanomaterials (Basel). 2023 Jan 3;13(1):213. doi: 10.3390/nano13010213.
8
Potential Gradient-Driven Dual-Functional Electrochromic and Electrochemical Device Based on a Shared Electrode Design.
Adv Sci (Weinh). 2024 Jul;11(28):e2401948. doi: 10.1002/advs.202401948. Epub 2024 May 20.
10
Low-Spin Fe Redox-Based Prussian Blue with excellent selective dual-band electrochromic modulation and energy-saving applications.
J Colloid Interface Sci. 2023 Apr 15;636:351-362. doi: 10.1016/j.jcis.2023.01.017. Epub 2023 Jan 8.

本文引用的文献

2
3D hierarchical porous hybrid nanostructure of carbon nanotubes and N-doped activated carbon.
Sci Rep. 2020 Nov 2;10(1):18793. doi: 10.1038/s41598-020-75831-x.
3
Facile Synthesis of Surface-Modified Carbon Quantum Dots (CQDs) for Biosensing and Bioimaging.
Materials (Basel). 2020 Jul 25;13(15):3313. doi: 10.3390/ma13153313.
4
Self-supported one-dimensional materials for enhanced electrochromism.
Nanoscale Horiz. 2018 May 1;3(3):261-292. doi: 10.1039/c8nh00016f. Epub 2018 Mar 9.
5
Seed-Assisted Synthesis of Graphene Films on Insulating Substrate.
Materials (Basel). 2019 Apr 28;12(9):1376. doi: 10.3390/ma12091376.
6
Improving Electrochromic Cycle Life of Prussian Blue by Acid Addition to the Electrolyte.
Materials (Basel). 2018 Dec 21;12(1):28. doi: 10.3390/ma12010028.
7
An Alternative Route to Obtain Carbon Quantum Dots from Photoluminescent Materials in Peat.
Materials (Basel). 2018 Aug 21;11(9):1492. doi: 10.3390/ma11091492.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验