Suppr超能文献

KiSprint 系统获得的冲刺力量-速度-功率特征的可靠性。

Reliability of Sprint Force-Velocity-Power Profiles Obtained with KiSprint System.

机构信息

University of Primorska, Faculty of Health Sciences, Slovenia.

University of Primorska, Andrej Marušič Institute, Slovenia.

出版信息

J Sports Sci Med. 2021 Apr 5;20(2):357-364. doi: 10.52082/jssm.2021.357. eCollection 2021 Jun.

Abstract

This study aimed to assess the within- and between-session reliability of the KiSprint system for determining force-velocity-power (FVP) profiling during sprint running. Thirty (23 males, 7 females; 18.7 ± 2.6 years;) young high-level sprinters performed maximal effort sprints in two sessions separated by one week. Split times (5, 10, 20 and 30 m), which were recorded with a laser distance meter (a component of the KiSprint system), were used to determine the horizontal FVP profile using the Samozino's field-based method. This method assesses the FVP relationships through estimates of the step-averaged ground reaction forces in sagittal plane during sprint acceleration using only anthropometric and spatiotemporal (split times) data. We also calculated the maximal theoretical power, force and velocity capabilities and the slope of the FV relationship, the maximal ratio of horizontal-to-resultant force (RF), and the decrease in the RF (D). Overall, the results showed moderate or good to excellent within- and between-session reliability for all variables (ICC > 0.75; CV < 10 %), with the exception of FV slope and D that showed low relative reliability (ICC = 0.47-0.48 within session, 0.31-0.33 between-session) and unacceptable between-session absolute reliability values (CV = 10.9-11.1 %). Future studies are needed to optimize the protocol in order to maximize the reliability of the FVP variables, especially when practitioners are interested in the FV slope and D. In summary, our results question the utility of the sprint-based FVP profiling for individualized training prescription, since the reliability of the FV slope and D RF variables is highly questionable.

摘要

本研究旨在评估 KiSprint 系统在测定短跑过程中力量-速度-功率(FVP)特征方面的内-间测试重复性。30 名(23 名男性,7 名女性;18.7±2.6 岁)年轻高水平短跑运动员在相隔一周的两次测试中进行最大努力冲刺。使用激光测距仪(KiSprint 系统的一部分)记录的分段时间(5、10、20 和 30 m),通过 Samozino 的基于场的方法确定水平 FVP 特征。该方法通过使用仅人体测量学和时空(分段时间)数据估计在加速过程中矢状面的步长平均地面反作用力,评估 FVP 关系。我们还计算了最大理论功率、力和速度能力以及 FV 关系的斜率、最大水平力与合力(RF)比以及 RF 的降低(D)。总体而言,除了 FV 斜率和 D 之外,所有变量(ICC>0.75;CV<10%)的内-间和间-间测试重复性均为中等或良好到优秀,而 FV 斜率和 D 的相对可靠性较低(ICC=0.47-0.48 内-间,0.31-0.33 间-间),间-间绝对可靠性值不可接受(CV=10.9-11.1%)。需要进一步的研究来优化方案,以最大限度地提高 FVP 变量的可靠性,特别是当从业者对 FV 斜率和 D 感兴趣时。总之,我们的结果质疑基于冲刺的 FVP 特征在个体化训练处方中的实用性,因为 FV 斜率和 D RF 变量的可靠性值得怀疑。

相似文献

1
Reliability of Sprint Force-Velocity-Power Profiles Obtained with KiSprint System.
J Sports Sci Med. 2021 Apr 5;20(2):357-364. doi: 10.52082/jssm.2021.357. eCollection 2021 Jun.
2
Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
Int J Environ Res Public Health. 2020 Sep 4;17(18):6447. doi: 10.3390/ijerph17186447.
3
Reliability of horizontal force-velocity-power profiling during short sprint-running accelerations using radar technology.
Sports Biomech. 2019 Feb;18(1):88-99. doi: 10.1080/14763141.2017.1386707. Epub 2017 Nov 10.
4
Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods.
Eur J Sport Sci. 2017 May;17(4):386-392. doi: 10.1080/17461391.2016.1249031. Epub 2016 Nov 3.
5
A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.
Scand J Med Sci Sports. 2016 Jun;26(6):648-58. doi: 10.1111/sms.12490. Epub 2015 May 21.
6
7
Technical ability of force application as a determinant factor of sprint performance.
Med Sci Sports Exerc. 2011 Sep;43(9):1680-8. doi: 10.1249/MSS.0b013e318216ea37.
8
Reliability of the force-velocity-power variables during ice hockey sprint acceleration.
Sports Biomech. 2022 Jan;21(1):56-70. doi: 10.1080/14763141.2019.1648541. Epub 2019 Aug 29.

引用本文的文献

本文引用的文献

1
Should We Base Training Prescription on the Force-Velocity Profile? Exploratory Study of Its Between-Day Reliability and Differences Between Methods.
Int J Sports Physiol Perform. 2021 Jul 1;16(7):1001-1007. doi: 10.1123/ijspp.2020-0308. Epub 2021 Feb 27.
2
Force-velocity profiling in athletes: Reliability and agreement across methods.
PLoS One. 2021 Feb 1;16(2):e0245791. doi: 10.1371/journal.pone.0245791. eCollection 2021.
3
Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
Int J Environ Res Public Health. 2020 Sep 4;17(18):6447. doi: 10.3390/ijerph17186447.
5
Influence of resisted sled-push training on the sprint force-velocity profile of male high school athletes.
Scand J Med Sci Sports. 2020 Mar;30(3):442-449. doi: 10.1111/sms.13600. Epub 2019 Dec 5.
6
Force-velocity profile changes with forearm wearable resistance during standing start sprinting.
Eur J Sport Sci. 2020 Aug;20(7):915-919. doi: 10.1080/17461391.2019.1686070. Epub 2019 Nov 11.
7
Reliability of the force-velocity-power variables during ice hockey sprint acceleration.
Sports Biomech. 2022 Jan;21(1):56-70. doi: 10.1080/14763141.2019.1648541. Epub 2019 Aug 29.
8
A simple method for computing sprint acceleration kinetics from running velocity data: Replication study with improved design.
J Biomech. 2019 Sep 20;94:82-87. doi: 10.1016/j.jbiomech.2019.07.020. Epub 2019 Jul 25.
9
Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual?
PLoS One. 2019 Jul 24;14(7):e0215551. doi: 10.1371/journal.pone.0215551. eCollection 2019.
10
Sprint force-velocity profiles in soccer players: impact of sex and playing level.
Sports Biomech. 2021 Dec;20(8):947-957. doi: 10.1080/14763141.2019.1618900. Epub 2019 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验