School of Earth, Energy and Environmental Sciences, Stanford University, 450 Serra Mall, Stanford, CA 94305-2115, USA.
J Synchrotron Radiat. 2021 Jul 1;28(Pt 4):1119-1126. doi: 10.1107/S1600577521004033. Epub 2021 May 28.
Zinc K-edge X-ray absorption near-edge structure (XANES) spectroscopy of Zn adsorbed to silica and Zn-bearing minerals, salts and solutions was conducted to explore how XANES spectra reflect coordination environment and disorder in the surface to which a metal ion is sorbed. Specifically, XANES spectra for five distinct Zn adsorption complexes (Zn) on quartz and amorphous silica [SiO] are presented from the Zn-water-silica surface system: outer-sphere octahedral Zn on quartz, inner-sphere octahedral Zn on quartz, inner-sphere tetrahedral Zn on quartz, inner-sphere octahedral Zn on SiO and inner-sphere tetrahedral Zn on SiO. XANES spectral analysis of these complexes on quartz versus SiO reveals that normalized peak absorbance and K-edge energy position generally decrease with increasing surface disorder and decreasing Zn-O coordination. On quartz, the absorption-edge energy of Zn ranges from 9663.0 to 9664.1 eV for samples dominated by tetrahedrally versus octahedrally coordinated species, respectively. On SiO, the absorption-edge energy of Zn ranges from 9662.3 to 9663.4 eV for samples dominated by tetrahedrally versus octahedrally coordinated species, respectively. On both silica substrates, octahedral Zn presents a single K-edge peak feature, whereas tetrahedral Zn presents two absorbance features. The energy space between the two absorbance peak features of the XANES K-edge of tetrahedral Zn is 2.4 eV for Zn on quartz and 3.2 eV for Zn on SiO. Linear combination fitting of samples with a mixture of Zn complex types demonstrates that the XANES spectra of octahedral and tetrahedral Zn on silica are distinct enough for quantitative identification. These results suggest caution when deciphering Zn speciation in natural samples via linear combination approaches using a single Zn standard to represent sorption on a particular mineral surface. Correlation between XANES spectral features and prior extended X-ray absorption fine structure (EXAFS) derived coordination environments for these Zn on silica samples provides insight into Zn speciation in natural systems with XANES compatible Zn concentrations too low for EXAFS analysis.
采用锌吸附在二氧化硅和含锌矿物、盐和溶液表面的近边 X 射线吸收谱(XANES)光谱技术,研究了 XANES 谱如何反映金属离子吸附表面的配位环境和无序性。具体来说,从锌-水-硅表面体系中,我们呈现了五个不同的 Zn 吸附络合物(Zn)在石英和无定形二氧化硅[SiO]上的 XANES 谱:石英上的外球八面体 Zn、石英上的内球八面体 Zn、石英上的内球四面体 Zn、SiO 上的内球八面体 Zn 和 SiO 上的内球四面体 Zn。这些在石英上与 SiO 上的络合物的 XANES 谱分析表明,归一化峰吸收率和 K 边能量位置通常随表面无序度的增加和 Zn-O 配位的减少而降低。在石英上,Zn 的吸收边能量范围为 9663.0 到 9664.1 eV,分别对应于主要由四面体和八面体配位物种主导的样品。在 SiO 上,Zn 的吸收边能量范围为 9662.3 到 9663.4 eV,分别对应于主要由四面体和八面体配位物种主导的样品。在这两种二氧化硅基质上,八面体 Zn 呈现单一 K 边峰特征,而四面体 Zn 呈现两个吸收峰特征。四面体 Zn 的 XANES K 边两个吸收峰特征之间的能量间隔为石英上 Zn 的 2.4 eV 和 SiO 上 Zn 的 3.2 eV。用混合 Zn 络合物类型的样品进行线性组合拟合表明,SiO 上的八面体和四面体 Zn 的 XANES 谱足够独特,可以进行定量识别。这些结果表明,在使用单一 Zn 标准来代表特定矿物表面上的吸附来通过线性组合方法解析天然样品中的 Zn 形态时需要谨慎。这些在 SiO 上的 Zn 样品的 XANES 谱特征与之前的扩展 X 射线吸收精细结构(EXAFS)衍生配位环境之间的相关性,为具有 XANES 兼容 Zn 浓度太低而无法进行 EXAFS 分析的天然体系中的 Zn 形态提供了深入了解。