Suppr超能文献

用于高性能锂离子电池的碳包覆LiMnFePO@LiLaTiO纳米棒复合材料的构建

Construction of Carbon-Coated LiMnFePO@LiLaTiO Nanorod Composites for High-Performance Li-Ion Batteries.

作者信息

Chang Hui, Li Ying, Fang Zi-Kui, Qu Jin-Peng, Zhu Yan-Rong, Yi Ting-Feng

机构信息

School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China.

School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.

出版信息

ACS Appl Mater Interfaces. 2021 Jul 21;13(28):33102-33111. doi: 10.1021/acsami.1c08373. Epub 2021 Jul 8.

Abstract

The carbon-coated LiMnFePO@LiLaTiO nanorod composites (denoted as C/LMFP@LLTO) have been successfully obtained according to a common hydrothermal synthesis following a post-calcination treatment. The morphology and particle size of LiMnFePO (denoted as LMFP) are not changed by the coating. All electrode materials exhibit nanorod morphology; they are 100-200 nm in length and 50-100 nm in width. The LiLaTiO (denoted as LLTO) coating can facilitate the charge transfer to enhance lithiation/delithiation kinetics, leading to an excellent rate performance and cycle stability of an as-obtained C/LMFP@LLTO electrode material. The reversible discharge capacities of C/LMFP@LLTO (3 wt %) at 0.05 and 5 C are 146 and 131.3 mA h g, respectively. After 100 cycles, C/LMFP@LLTO (3 wt %) exhibits an outstanding capacity of 106.4 mA h g with an 81% capacity retention rate at 5 C, indicating an excellent reversible capacity and good cycle capacity. Therefore, it can be considered that LLTO coating is a prospective pathway to exploit the electrochemical performances of C/LMFP.

摘要

通过常规水热合成法并经过后续煅烧处理,成功制备了碳包覆的LiMnFePO@LiLaTiO纳米棒复合材料(记为C/LMFP@LLTO)。LiMnFePO(记为LMFP)的形貌和粒径在包覆后并未改变。所有电极材料均呈现纳米棒形貌;它们的长度为100 - 200 nm,宽度为50 - 100 nm。LiLaTiO(记为LLTO)包覆层能够促进电荷转移,从而增强锂化/脱锂动力学,使得所制备的C/LMFP@LLTO电极材料具有优异的倍率性能和循环稳定性。C/LMFP@LLTO(3 wt%)在0.05 C和5 C下的可逆放电容量分别为146和131.3 mA h g。在100次循环后,C/LMFP@LLTO(3 wt%)在5 C下展现出106.4 mA h g的出色容量以及81%的容量保持率,表明其具有优异的可逆容量和良好的循环性能。因此,可以认为LLTO包覆是提升C/LMFP电化学性能的一种有前景的途径。

相似文献

1
Construction of Carbon-Coated LiMnFePO@LiLaTiO Nanorod Composites for High-Performance Li-Ion Batteries.
ACS Appl Mater Interfaces. 2021 Jul 21;13(28):33102-33111. doi: 10.1021/acsami.1c08373. Epub 2021 Jul 8.
2
Enhancement of LiZrO Modification of the Cycle Life of N/S-Doped LiMnFePO/C Composite Cathodes for Lithium Ion Batteries.
Langmuir. 2023 Apr 11;39(14):5187-5198. doi: 10.1021/acs.langmuir.3c00244. Epub 2023 Mar 27.
4
A Gel-Polymer Sn-C/LiMn0.5Fe0.5PO4 Battery Using a Fluorine-Free Salt.
ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21198-207. doi: 10.1021/acsami.5b05179. Epub 2015 Sep 17.
5
Enhancing Li-ion conduction in composite polymer electrolytes using LiLaTiO nanotubes.
Chem Commun (Camb). 2021 Oct 21;57(84):11068-11071. doi: 10.1039/d1cc04220c.
6
Hydrothermal synthesis, evolution, and electrochemical performance of LiMn0.5Fe0.5PO4 nanostructures.
Phys Chem Chem Phys. 2015 Jul 28;17(28):18629-37. doi: 10.1039/c5cp02665b.
9
Stabilizing the structure of LiMnFePOvia the formation of concentration-gradient hollow spheres with Fe-rich surfaces.
Nanoscale. 2019 Mar 7;11(9):3933-3944. doi: 10.1039/c8nr10224d. Epub 2019 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验