Suppr超能文献

关于一阶加时滞过程的自抗扰控制的稳定性

On the stability of active disturbance rejection control for first-order plus delay time processes.

作者信息

Skupin Piotr, Nowak Paweł, Czeczot Jacek

机构信息

Department of Automatic Control and Robotics, Silesian University of Technology, ul.Akademicka 16, Gliwice 44-100, Poland.

出版信息

ISA Trans. 2022 Jun;125:179-188. doi: 10.1016/j.isatra.2021.06.030. Epub 2021 Jun 23.

Abstract

The paper presents a stability analysis of a closed-loop system with an active disturbance rejection control (ADRC) algorithm and a reduced-order extended state observer (RESO). The controller is designed for first-order plus delay time processes, and one of the input signals to the RESO is delayed to compensate for the effect of the system delay. If the process delay is known, perfect synchronization between the observer input signals can be achieved. In a more realistic case, the process delay is not precisely known, and the resulting imperfect synchronization may lead to instability of the closed-loop system. The perfect synchronization case shows that the closed-loop system can be stabilized for any delay. For the imperfect synchronization case, delay-dependent stability conditions are derived for a simple tuning method.

摘要

本文提出了一种具有自抗扰控制(ADRC)算法和降阶扩张状态观测器(RESO)的闭环系统稳定性分析。该控制器针对一阶加纯延迟过程进行设计,并且RESO的一个输入信号被延迟以补偿系统延迟的影响。如果过程延迟已知,则可以实现观测器输入信号之间的完美同步。在更实际的情况下,过程延迟并不精确已知,由此产生的不完美同步可能会导致闭环系统不稳定。完美同步情况表明,对于任何延迟,闭环系统都可以稳定。对于不完美同步情况,推导了一种简单整定方法的延迟依赖稳定性条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验