Suppr超能文献

利用振动子系统分析研究膜蛋白动力学的正常模式分析。

Normal mode analysis of membrane protein dynamics using the vibrational subsystem analysis.

机构信息

Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Bldg., 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, USA.

出版信息

J Chem Phys. 2021 May 21;154(19):195102. doi: 10.1063/5.0046710.

Abstract

The vibrational subsystem analysis is a useful approach that allows for evaluating the spectrum of modes of a given system by integrating out the degrees of freedom accessible to the environment. The approach could be utilized for exploring the collective dynamics of a membrane protein (system) coupled to the lipid bilayer (environment). However, the application to membrane proteins is limited due to high computational costs of modeling a sufficiently large membrane environment unbiased by end effects, which drastically increases the size of the investigated system. We derived a recursive formula for calculating the reduced Hessian of a membrane protein embedded in a lipid bilayer by decomposing the membrane into concentric cylindrical domains with the protein located at the center. The approach allows for the design of a time- and memory-efficient algorithm and a mathematical understanding of the convergence of the reduced Hessian with respect to increasing membrane sizes. The application to the archaeal aspartate transporter Glt illustrates its utility and efficiency in capturing the transporter's elevator-like movement during its transition between outward-facing and inward-facing states.

摘要

振动子系统分析是一种有用的方法,通过对环境可及自由度进行积分,可以评估给定系统的模式谱。该方法可用于探索与脂质双层(环境)耦合的膜蛋白(系统)的集体动力学。然而,由于建模不受末端效应影响的足够大的膜环境的计算成本很高,该方法在膜蛋白中的应用受到限制,这极大地增加了所研究系统的规模。我们通过将膜分解为具有蛋白质位于中心的同心圆柱域,推导出了一种用于计算嵌入脂质双层中的膜蛋白的约化 Hessian 的递归公式。该方法允许设计一种时间和内存效率高的算法,并从数学上理解约化 Hessian 随膜尺寸增加的收敛性。应用于古细菌天冬氨酸转运蛋白 Glt 说明了它在捕捉转运蛋白在向外和向内构象之间转变过程中类似电梯的运动时的有效性和效率。

相似文献

1
Normal mode analysis of membrane protein dynamics using the vibrational subsystem analysis.
J Chem Phys. 2021 May 21;154(19):195102. doi: 10.1063/5.0046710.
2
Atomistic characterization of collective protein-water-membrane dynamics.
Phys Chem Chem Phys. 2019 Jul 24;21(29):15958-15965. doi: 10.1039/c9cp00725c.
4
Assessing the Partial Hessian Approximation in QM/MM-Based Vibrational Analysis.
J Chem Theory Comput. 2024 Nov 12;20(21):9533-9546. doi: 10.1021/acs.jctc.4c00882. Epub 2024 Oct 18.
5
Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh.
Biophys J. 2012 Mar 21;102(6):1331-40. doi: 10.1016/j.bpj.2012.02.028. Epub 2012 Mar 20.
6
Elevator-type mechanisms of membrane transport.
Biochem Soc Trans. 2020 Jun 30;48(3):1227-1241. doi: 10.1042/BST20200290.
8
Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity.
Annu Rev Phys Chem. 2024 Jun;75(1):283-305. doi: 10.1146/annurev-physchem-090722-010230. Epub 2024 Jun 14.
9
Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
Acc Chem Res. 2009 Sep 15;42(9):1280-9. doi: 10.1021/ar900014e.
10
Comparative study of various normal mode analysis techniques based on partial Hessians.
J Comput Chem. 2010 Apr 15;31(5):994-1007. doi: 10.1002/jcc.21386.

引用本文的文献

1
Cryo-electron microscopy structures of a high-affinity zinc ABC transporter.
bioRxiv. 2025 Jul 4:2025.07.03.663024. doi: 10.1101/2025.07.03.663024.
3
Anisotropic Network Analysis of Open/Closed HCN4 Channel Advocates Asymmetric Subunit Cooperativity in cAMP Modulation of Gating.
J Chem Inf Model. 2024 Jun 24;64(12):4727-4738. doi: 10.1021/acs.jcim.4c00360. Epub 2024 Jun 3.
5
Modeling protein-nucleic acid complexes with extremely large conformational changes using Flex-LZerD.
Proteomics. 2023 Sep;23(17):e2200322. doi: 10.1002/pmic.202200322. Epub 2022 Dec 25.
6
Protein dynamics developments for the large scale and cryoEM: case study of ProDy 2.0.
Acta Crystallogr D Struct Biol. 2022 Apr 1;78(Pt 4):399-409. doi: 10.1107/S2059798322001966. Epub 2022 Mar 16.

本文引用的文献

1
ProDy 2.0: increased scale and scope after 10 years of protein dynamics modelling with Python.
Bioinformatics. 2021 Oct 25;37(20):3657-3659. doi: 10.1093/bioinformatics/btab187.
2
Cellular Membranes, a Versatile Adaptive Composite Material.
Front Cell Dev Biol. 2020 Aug 5;8:684. doi: 10.3389/fcell.2020.00684. eCollection 2020.
3
Shape-preserving elastic solid models of macromolecules.
PLoS Comput Biol. 2020 May 14;16(5):e1007855. doi: 10.1371/journal.pcbi.1007855. eCollection 2020 May.
4
Molecular Dynamics Simulations of Membrane Proteins: An Overview.
J Chem Inf Model. 2018 Nov 26;58(11):2193-2202. doi: 10.1021/acs.jcim.8b00639. Epub 2018 Oct 24.
5
Allosteric Modulation of Intact γ-Secretase Structural Dynamics.
Biophys J. 2017 Dec 19;113(12):2634-2649. doi: 10.1016/j.bpj.2017.10.012.
6
DynOmics: dynamics of structural proteome and beyond.
Nucleic Acids Res. 2017 Jul 3;45(W1):W374-W380. doi: 10.1093/nar/gkx385.
7
Drugging Membrane Protein Interactions.
Annu Rev Biomed Eng. 2016 Jul 11;18:51-76. doi: 10.1146/annurev-bioeng-092115-025322. Epub 2016 Feb 5.
8
Transferability of Various Molecular Property Tensors in Vibrational Spectroscopy.
J Chem Theory Comput. 2012 Mar 13;8(3):977-85. doi: 10.1021/ct200714h. Epub 2012 Feb 10.
9
iGNM 2.0: the Gaussian network model database for biomolecular structural dynamics.
Nucleic Acids Res. 2016 Jan 4;44(D1):D415-22. doi: 10.1093/nar/gkv1236. Epub 2015 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验