Suppr超能文献

利用物理信息机器学习对中层水宽带目标光谱进行分类。

Classification of broadband target spectra in the mesopelagic using physics-informed machine learning.

机构信息

Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

Applied Physics Laboratory, University of Washington, Seattle, Washington 98195, USA.

出版信息

J Acoust Soc Am. 2021 Jun;149(6):3889. doi: 10.1121/10.0005114.

Abstract

Broadband echosounders measure the scattering response of an organism over a range of frequencies. When compared with acoustic scattering models, this response can provide insight into the type of organism measured. Here, we train the k-Nearest Neighbors algorithm using scattering models and use it to group target spectra (25-40 kHz) measured in the mesopelagic near the New England continental shelf break. Compared to an unsupervised approach, this creates groupings defined by their scattering physics and does not require significant tuning. The model classifies human-annotated target spectra as gas-bearing organisms (at, below, or above resonance) or fluid-like organisms with a weighted F1-score of 0.90. Class-specific F1-scores varied-the F1-score exceeded 0.89 for all gas-bearing organisms, while fluid-like organisms were classified with an F1-score of 0.73. Analysis of classified target spectra provides insight into the size and distribution of organisms in the mesopelagic and allows for the assessment of assumptions used to calculate organism abundance. Organisms with resonance peaks between 25 and 40 kHz account for 43% of detections, but a disproportionately high fraction of volume backscatter. Results suggest gas bearing organisms account for 98.9% of volume backscattering concurrently measured using a 38 kHz shipboard echosounder between 200 and 800 m depth.

摘要

宽带回声测深仪测量生物体在一系列频率下的散射响应。与声学散射模型相比,这种响应可以深入了解所测量的生物体类型。在这里,我们使用散射模型训练 k-最近邻算法,并将其用于对新英格兰大陆架边缘附近中层水域中测量的目标光谱(25-40 kHz)进行分组。与无监督方法相比,这种方法通过其散射物理特性创建分组,并且不需要大量调整。该模型将人类标注的目标光谱分类为含气生物体(在共振处、低于或高于共振处)或具有加权 F1 分数为 0.90 的类流体生物体。特定类别的 F1 分数各不相同——所有含气生物体的 F1 分数均超过 0.89,而类流体生物体的 F1 分数为 0.73。对分类后的目标光谱进行分析,可以深入了解中层水域中生物体的大小和分布情况,并评估用于计算生物体丰度的假设。在 25 至 40 kHz 之间具有共振峰的生物体占检测到的生物体的 43%,但它们的体积反向散射比例却不成比例地高。结果表明,在 200 至 800 米深度使用 38 kHz 船载回声测深仪同时测量的体积反向散射中,含气生物体占 98.9%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验