Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 2, 18059, Rostock, Germany.
Institut für Chemie, Abteilung für Anorganische Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany.
Chemphyschem. 2021 Sep 15;22(18):1850-1856. doi: 10.1002/cphc.202100424. Epub 2021 Aug 4.
The paradigm of supramolecular chemistry relies on the delicate balance of noncovalent forces. Here we present a systematic approach for controlling the structural versatility of halide salts by the nature of hydrogen bonding interactions. We synthesized halide salts with hydroxy-functionalized pyridinium cations [HOC Py] (n=2, 3, 4) and chloride, bromide and iodide anions, which are typically used as precursor material for synthesizing ionic liquids by anion metathesis reaction. The X-ray structures of these omnium halides show two types of hydrogen bonding: 'intra-ionic' H-bonds, wherein the anion interacts with the hydroxy group and the positively charged ring at the same cation, and 'inter-ionic' H-bonds, wherein the anion also interacts with the hydroxy group and the ring system but of different cations. We show that hydrogen bonding is controllable by the length of the hydroxyalkyl chain and the interaction strength of the anion. Some molten halide salts exhibit a third type of hydrogen bonding. IR spectra reveal elusive H-bonds between the OH groups of cations, showing interaction between ions of like charge. They are formed despite the repulsive interaction between the like-charged ions and compete with the favored cation-anion H-bonds. All types of H-bonding are analyzed by quantum chemical methods and the natural bond orbital approach, emphasizing the importance of charge transfer in these interactions. For simple omnium salts, we evidenced three distinct types of hydrogen bonds: Three in one!
超分子化学的范例依赖于非共价键的微妙平衡。在这里,我们提出了一种通过氢键相互作用的性质来控制卤化物盐结构多功能性的系统方法。我们合成了具有羟基官能化的吡啶鎓阳离子[HOC Py](n=2,3,4)和氯离子、溴离子和碘离子的卤化物盐,这些盐通常用作阴离子交换反应合成离子液体的前体材料。这些卤化物盐的 X 射线结构显示出两种类型的氢键:“离子内”氢键,其中阴离子与羟基和同一阳离子的正电荷环相互作用,以及“离子间”氢键,其中阴离子也与羟基和不同阳离子的环系统相互作用。我们表明氢键可以通过羟基烷基链的长度和阴离子的相互作用强度来控制。一些熔融卤化物盐表现出第三种氢键。IR 光谱揭示了阳离子的 OH 基团之间难以捉摸的氢键,表明同种电荷离子之间存在相互作用。尽管同种电荷离子之间存在排斥相互作用,但它们还是形成了,并且与有利于的阳离子-阴离子氢键竞争。通过量子化学方法和自然键轨道方法分析了所有类型的氢键,强调了电荷转移在这些相互作用中的重要性。对于简单的卤化物盐,我们证明了三种不同类型的氢键:三合一!