Suppr超能文献

利用标准化降水蒸散指数研究印度干旱参数的区域变化和长期趋势。

Regional variation of drought parameters and long-term trends over India using standardized precipitation evapotranspiration index.

机构信息

Department of Remote Sensing and GIS, Vidyasagar University, Midnapore, West Bengal, India.

Department of Remote Sensing and GIS, Vidyasagar University, Midnapore, West Bengal, India.

出版信息

J Environ Manage. 2021 Oct 15;296:113056. doi: 10.1016/j.jenvman.2021.113056. Epub 2021 Jul 6.

Abstract

Analysing historical drought pattern is vital for implementation of efficient drought adaptation and mitigation policies. In this study, we examined the meteorological drought characteristics of India during 1901-2015, using Climate Research Unit (CRU) based Standardized Precipitation Evapotranspiration Index (SPEI) at multiple timescales i.e., 1 month (SPEI01), 3 month (SPEI03), 6 month (SPEI06), 12 month (SPEI12). Here, we applied K-means clustering algorithm on SPEI12 (December) to find out different clusters with distinct drought characteristics. The six different homogeneous regions, i.e., cluster1 (C1), cluster2 (C2), cluster3 (C3), cluster4 (C4), cluster5 (C5), and cluster6 (C6) identified by K mean clustering largely resemble with the clusters mentioned in previous researches. Different drought parameters (duration, frequency, intensity) have been also analysed for each cluster on a monthly, seasonal and interannual basis. The study indicates that northern part of India (C6, C3) experienced frequent droughts at shorter timescales whereas the western (C2) and north eastern (C4) part of the country encountered frequent drought occurrences at longer timescale. It is worthy to mention that the C2 region comprising the semi-arid and arid western part of the country including the great Indian desert, is vulnerable to frequent, prolonged and severe droughts at longer timescale (SPEI12). The study revealed a significant regional variation in drought trends identified by Modified Mann-Kendall (MMK) trend test. The annual trend analysis shows statistically significant (p < 0.05) increasing drought trend over C3 and C4 regions comprising the fertile Gangetic and Brahmaputra plains. The seasonal MMK trend analysis reveals significant increase (p < 0.05) in droughts over C3 (-0.006) and C4 (-0.005) during monsoon. The increasing drought trend over the Gangetic plain (C3) is prominent especially in the months of July (p < 0.05, slope = -0.005) and August (p < 0.001, slope = -0.006). The study provides a region-specific understanding of drought characteristics and long-term trends crucial for preparing adaptive strategies to minimize the cumulative impacts of droughts.

摘要

分析历史干旱模式对于实施有效的干旱适应和缓解政策至关重要。在本研究中,我们使用基于气候研究单位(CRU)的标准化降水蒸散指数(SPEI),在多个时间尺度上研究了印度在 1901 年至 2015 年期间的气象干旱特征,即 1 个月(SPEI01)、3 个月(SPEI03)、6 个月(SPEI06)、12 个月(SPEI12)。在这里,我们在 SPEI12(12 月)上应用 K-均值聚类算法来找出具有不同干旱特征的不同聚类。通过 K-均值聚类识别的六个不同的同质区域,即聚类 1(C1)、聚类 2(C2)、聚类 3(C3)、聚类 4(C4)、聚类 5(C5)和聚类 6(C6),与先前研究中提到的聚类大致相似。我们还对每个聚类进行了月度、季节性和年际的不同干旱参数(持续时间、频率、强度)分析。研究表明,印度北部(C6、C3)在较短的时间尺度上经历了频繁的干旱,而该国的西部(C2)和东北部(C4)则在较长的时间尺度上遭遇了频繁的干旱。值得一提的是,包括印度大沙漠在内的该国半干旱和干旱西部的 C2 地区容易在较长的时间尺度(SPEI12)上发生频繁、持续和严重的干旱。修正的 Mann-Kendall(MMK)趋势检验表明,干旱趋势的区域变化显著。年际趋势分析表明,包含肥沃的恒河平原和布拉马普特拉平原的 C3 和 C4 地区的干旱趋势具有统计学意义(p<0.05)。季节性 MMK 趋势分析表明,季风期间 C3(-0.006)和 C4(-0.005)的干旱明显增加(p<0.05)。恒河平原(C3)的干旱趋势增加尤其明显,尤其是在 7 月(p<0.05,斜率=-0.005)和 8 月(p<0.001,斜率=-0.006)。本研究提供了对干旱特征和长期趋势的特定区域的理解,这对于制定适应策略以最小化干旱的累积影响至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验