Suppr超能文献

MHD simulation of supersonic FRC merging corrected by non-invasive magnetic measurements.

作者信息

Kobayashi D, Asai T, Takahashi Ts, Watanabe T, Yoshino T, Harashima D, Dettrick S, Mok Y, Gota H

机构信息

College of Science and Technology, Nihon University, Tokyo 101-8308, Japan.

TAE Technologies, Inc., Foothill Ranch, California 92610, USA.

出版信息

Rev Sci Instrum. 2021 May 1;92(5):053515. doi: 10.1063/5.0043711.

Abstract

In this study, a newly developed correction method with external magnetic measurements for the magnetohydrodynamics (MHD) simulation of the collisional merging formation of a field-reversed configuration (FRC) realized the estimation of the internal structure of the FRCs without invasive internal measurements. In the collisional merging formation of FRCs, an FRC is formed via merging of two initial FRC-like plasmoids at supersonic/Alfvénic velocity. An invasive diagnostic may also interfere with the collisional merging formation process. A two-dimensional resistive MHD simulation was conducted to evaluate the global behavior and internal structure of FRCs in the collisional merging formation process without invasive measurements. This code simulated the initial formation and collisional merging processes of FRCs including discharge circuits. However, the translation velocity and the pressure of initial FRCs did not simultaneously agree with the experimental values because the magnetic pressure gradient in each formation region could not be reproduced without the artificial adjustment of the initial condition. The experimentally measured current distribution was given as the initial condition of the circuit calculation in the developed correction method. The initial FRCs were successfully translated at the translation velocity and plasma pressure in the corrected simulation, both of which were equivalent to the experiments. The properties of the merged FRCs in the experiments such as volume, total temperature, and average electron density were reproduced in the corrected simulation. The detailed radial profile of the internal magnetic field of the FRC was also measured and found to agree very well with the simulation results.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验