Gonzalez-Martin J, Garcia-Munoz M, Sieglin B, Herrmann A, Lunt T, Ayllon-Guerola J, Galdon-Quiroga J, Hidalgo-Salaverri J, Kovacsik A, Rivero-Rodriguez J F, Sanchis L, Silvagni D, Zoletnik S, Dominguez J
Department of Mechanical Engineering and Manufacturing, Universidad de Sevilla, 41092 Sevilla, Spain.
Centro Nacional de Aceleradores (CNA), 41092 Sevilla, Spain.
Rev Sci Instrum. 2021 May 1;92(5):053538. doi: 10.1063/5.0043756.
A poloidal array of scintillator-based Fast-Ion Loss Detectors (FILDs) has been installed in the ASDEX Upgrade (AUG) tokamak. While all AUG FILD systems are mounted on reciprocating arms driven externally by servomotors, the reciprocating system of the FILD probe located just below the midplane is based on a magnetic coil that is energized in real-time by the AUG discharge control system. This novel reciprocating system allows, for the first time, real-time control of the FILD position including infrared measurements of its probe head temperature to avoid overheating. This considerably expands the diagnostic operational window, enabling unprecedented radial measurements of fast-ion losses. Fast collimator-slit sweeping (up to 0.2 mm/ms) is used to obtain radially resolved velocity-space measurements along 8 cm within the scrape-off layer. This provides a direct evaluation of the neutral beam deposition profiles via first-orbit losses. Moreover, the light-ion beam probe (LIBP) technique is used to infer radial profiles of fast-ion orbit deflection. This radial-LIBP technique is applied to trapped orbits (exploring both the plasma core and the FILD stroke near the wall), enabling radial localization of internal plasma fluctuations (neoclassical tearing modes). This is quantitatively compared against electron cyclotron emission measurements, showing excellent agreement. For the first time, radial profiles of fast-ion losses in MHD quiescent plasmas as well as in the presence of magnetic islands and edge localized modes are presented.
一个基于闪烁体的快离子损失探测器(FILD)极向阵列已安装在ASDEX升级(AUG)托卡马克装置中。虽然所有AUG FILD系统都安装在由伺服电机外部驱动的往复臂上,但位于中平面下方的FILD探头的往复系统基于一个由AUG放电控制系统实时供电的电磁线圈。这种新颖的往复系统首次实现了对FILD位置的实时控制,包括对其探头温度的红外测量以避免过热。这大大扩展了诊断操作窗口,实现了前所未有的快离子损失径向测量。快速准直器狭缝扫描(高达0.2毫米/毫秒)用于在刮离层内沿8厘米获得径向分辨的速度空间测量。这通过首次轨道损失直接评估中性束沉积剖面。此外,轻离子束探头(LIBP)技术用于推断快离子轨道偏转的径向剖面。这种径向LIBP技术应用于捕获轨道(探索等离子体核心和靠近壁的FILD行程),实现内部等离子体波动(新经典撕裂模)的径向定位。将其与电子回旋辐射测量进行定量比较,显示出极佳的一致性。首次展示了MHD静态等离子体以及存在磁岛和边缘局域模时快离子损失的径向剖面。