Martinez Jaime L, Damon Aaron, Domingo Ricardo A, Valero-Moreno Fidel, Quiñones-Hinojosa Alfredo
Neurosurgery Department, Medical University of South Carolina, Charleston, South Carolina, USA.
Neurologic Surgery Department, Mayo Clinic, Jacksonville, Florida, USA.
Oper Neurosurg (Hagerstown). 2021 Sep 15;21(4):E355-E356. doi: 10.1093/ons/opab238.
Neurosurgical training is being challenged by rigorous work-hour restrictions and the COVID-19 pandemic.1 Now, more than ever, surgical simulation plays a pivotal role in resident education and psychomotor skill development. Three-dimensional (3D) printing technologies enable the construction of inexpensive, patient-specific, anatomically accurate physical models for a more convenient and realistic simulation of complex skull base approaches in a safe environment.2 All stages of the surgical procedure can be simulated, from positioning and exposure to deep microdissection, which has an unparalleled educational value. The complex approach-specific anatomy, narrow working angles, and pathoanatomic relationships can be readily explored from the surgeon's perspective or point of view.2,3 Furthermore, different thermoplastic polymers can be utilized to replicate the visual and tactile feedback of bone (cortical/cancellous), neurological, and vascular tissues.4 Retrosigmoid craniectomies are widely used in neurosurgery with various applications, including microvascular decompressions in patients with trigeminal neuralgia.5-7 Removal of the suprameatal tubercle (SMT) extends the retrosigmoid approach superiorly to the middle fossa and Meckel's cave, and anteriorly to the clivus.8,9 This maneuver may be necessary in patients with prominent SMTs obstructing the view of the trigeminal nerve and in patients with a more anterosuperior neurovascular conflict. This video illustrates a microsurgical training tool for learning and honing the technique of retrosigmoid craniectomy and suprameatal drilling using an affordable (29.00 USD) biomimetic 3D-printed simulator that closely recapitulates not only the anatomy but also the tactile feedback of drilling and manipulating neurological tissues (see Table and Graph 1; minute 07:11) as it happens at the time of surgery.
神经外科培训正受到严格的工作时间限制和新冠疫情的挑战。如今,手术模拟在住院医师教育和心理运动技能发展中发挥着比以往任何时候都更为关键的作用。三维(3D)打印技术能够构建价格低廉、针对患者个体、解剖结构精确的实体模型,以便在安全环境中更便捷、逼真地模拟复杂的颅底手术入路。手术过程的各个阶段都能得到模拟,从定位和暴露到深部显微解剖,具有无可比拟的教育价值。特定入路的复杂解剖结构、狭窄的工作角度以及病理解剖关系都能从外科医生的视角轻松探究。此外,不同的热塑性聚合物可用于复制骨组织(皮质/松质骨)、神经组织和血管组织的视觉及触觉反馈。乙状窦后颅骨切除术在神经外科中广泛应用于各种情况,包括三叉神经痛患者的微血管减压术。去除颞骨岩部上结节(SMT)可将乙状窦后入路向上延伸至中颅窝和 Meckel 腔,向前延伸至斜坡。对于 SMT 突出遮挡三叉神经视野的患者以及存在更前上方神经血管冲突的患者,这一操作可能是必要的。本视频展示了一种显微手术训练工具,用于学习和磨练乙状窦后颅骨切除术及颞骨岩部上钻孔技术,该工具使用了价格实惠(29.00 美元)的仿生 3D 打印模拟器,它不仅能精确再现解剖结构,还能模拟手术时钻孔和操作神经组织的触觉反馈(见表和图 1;07:11 分钟)。