Suppr超能文献

运输工具:借助联网车辆驱动学习

Tools for Transport: Driven to Learn With Connected Vehicles.

作者信息

Morris Nichole, Craig Curtis, Mirman Jessica Hafetz

机构信息

Department of Mechanical Engineering, University of Minnesota.

Department of Clinical and Health Psychology, University of Edinburgh.

出版信息

Top Cogn Sci. 2021 Oct;13(4):708-727. doi: 10.1111/tops.12565. Epub 2021 Jul 10.

Abstract

Vehicle automation and assistance technologies have been touted as a means to reduce traffic collisions by minimizing or eliminating "error-prone" and inefficient human operators. In concept, automation exists on a continuum that includes engaged driving by a human operator augmented by automated support features, vigilant driver monitoring of vehicle behavior with the possibility of driver take-over, to full automation with no active monitoring by a human operator. Moreover, the degree of automation varies by vehicle features (e.g., lane centering, emergency braking, adaptive cruise control, parking), by setting, meaning that automated features may or may not be available depending on specific attributes of the traffic environment (e.g., traffic volume, road geometry, etc), and by implementation (e.g., haptic vs. auditory warnings). Thus, these automotive "transportation tools" are highly heterogeneous and pose unique challenges and opportunities for driver training. In this paper, we report the results of an experimental study (n = 36) to determine if enhanced vehicle feedback influences driver trust, effort, frustration, and performance (indexed by reaction time) in a virtual driving environment. Results are contextualized in the extant literature on learning to operate motor vehicles and outline key research questions essential for understanding the processes by which skilled performance develops with respect to a real-world practical tool: the increasingly automated automobile.

摘要

车辆自动化和辅助技术被吹捧为一种通过最小化或消除“容易出错”和效率低下的人类操作员来减少交通碰撞的手段。从概念上讲,自动化存在于一个连续体上,包括人类操作员在自动化支持功能的增强下进行的驾驶、驾驶员对车辆行为的警惕监控以及驾驶员接管的可能性,再到完全自动化且没有人类操作员的主动监控。此外,自动化程度因车辆功能(例如车道居中、紧急制动、自适应巡航控制、停车)、设置而异,这意味着自动化功能可能根据交通环境的特定属性(例如交通量、道路几何形状等)可用或不可用,并且因实现方式(例如触觉与听觉警告)而异。因此,这些汽车“运输工具”高度异质,给驾驶员培训带来了独特挑战和机遇。在本文中,我们报告了一项实验研究(n = 36)的结果,以确定增强的车辆反馈是否会影响虚拟驾驶环境中的驾驶员信任、努力程度、挫败感和表现(以反应时间为指标)。研究结果将结合关于学习操作机动车辆的现有文献进行背景分析,并概述对于理解熟练操作这一现实世界实用工具(日益自动化的汽车)的发展过程至关重要的关键研究问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验