Suppr超能文献

原子吡啶氮位促进双壳层空心 Ru/C 纳米反应器中乙酰丙酸的加氢反应。

Atomic Pyridinic Nitrogen Sites Promoting Levulinic Acid Hydrogenations over Double-Shelled Hollow Ru/C Nanoreactors.

机构信息

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.

Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, 310014, China.

出版信息

Small. 2021 Aug;17(33):e2101271. doi: 10.1002/smll.202101271. Epub 2021 Jul 12.

Abstract

Nitrogen-doped nanocarbons are widely used as supports for metal-heterogeneous catalytic conversions. When nitrogen-doped nanocarbon supports are used to disperse metallic nanoparticles (MNPs), the nitrogen dopant can enhance MNPs electron density to reach higher catalytic activity and promote MNPs stability through anchoring effects. However, the precise identification of active nitrogen species between N-dopants and reactants is rarely reported. Herein, a proof-of-concept study on the active N species for levulinic acid hydrogenation is reported. A double-shell structured carbon catalyst (DSC) is designed with selectively locating ultrafine Ru NPs only on inner carbon shell, specifically, different N species on the external carbon shell. Through the design of such a nanostructure, it is demonstrated that the alkaline pyridinic N species on the outer shell serves as an anchor point for the spontaneous binding of the acidic reactant. The pyridinic N content can be modulated from 7.4 to 29.2 mg g by selecting different precursors. Finally, the Ru-DSC-CTS (using chitosan as the precursor) catalyst achieves a 99% conversion of levulinic acid under 70 °C and 4 MPa hydrogen pressure for 1 h. This work sheds light on the design of nanoreactors at the atomic scale and investigates heterogeneous catalysis at the molecular level.

摘要

氮掺杂纳米碳被广泛用作金属多相催化转化的载体。当氮掺杂纳米碳载体用于分散金属纳米颗粒(MNPs)时,氮掺杂剂可以通过锚固效应增强 MNPs 的电子密度,从而达到更高的催化活性和促进 MNPs 的稳定性。然而,关于氮掺杂剂和反应物之间的活性氮物种的精确鉴定很少有报道。本文报道了用于加氢转化反应的活性氮物种的概念验证研究。设计了一种具有双层结构的碳催化剂(DSC),其中超细微的 Ru NPs 选择性地仅位于内碳壳上,具体来说,是外碳壳上的不同氮物种。通过这种纳米结构的设计,证明了外壳上的碱性吡啶氮物种作为酸性反应物自发结合的锚固点。通过选择不同的前驱体,可以将吡啶氮含量从 7.4 调节到 29.2mg g。最后,使用壳聚糖作为前驱体的 Ru-DSC-CTS 催化剂在 70°C 和 4 MPa 氢压下仅 1 h 即可实现 99%的乙酰丙酸转化率。这项工作揭示了原子尺度纳米反应器的设计,并在分子水平上研究了多相催化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验