Centro Interdisciplinar de Energia e Ambiente, CIENAM, Universidade Federal da Bahia, Ondina, Salvador, Bahia, 40170-115, Brazil.
Centro Interdisciplinar de Energia e Ambiente, CIENAM, Universidade Federal da Bahia, Ondina, Salvador, Bahia, 40170-115, Brazil; Instituto de Química, Universidade Federal da Bahia, Ondina, Salvador, Bahia, 40170-115, Brazil.
Environ Res. 2021 Nov;202:111663. doi: 10.1016/j.envres.2021.111663. Epub 2021 Jul 10.
Mangrove soils with high organic carbon (C) content are likely to contain C that is vulnerable to remineralization during land use changes. Mangrove conversion to different land uses might deplete soil C stocks causing variable carbon dioxide emissions, but the extent of these emissions and the fraction of soil C (i.e., labile or stable/recalcitrant) that is mostly lost is poorly understood. Here, we study mangrove soil C degradability and its susceptibility to mineralization after mangrove disturbance. We measured changes in soil properties, organic matter (OM) stability and C pools and sources across a mangrove disturbance gradient (i.e., pristine forests, degraded mangroves receiving domestic sewage and shrimp farm effluents, and shrimp ponds). Results showed that the conversion of mangroves to shrimp ponds caused the most severe changes in soil properties, OM and C characteristics. Shrimp pond soils contained the lowest OM-C pools, consisted mostly of stable OM (i.e., recalcitrant and refractory; 36.0 ± 5.7% of the total OM) and enriched δC (-22.6 ± 2.7‰). Conversely, control mangrove soils had the largest OM-C pools consisting of a large unstable OM fraction (i.e., labile; 46.4 ± 4.2%) and lighter δC (-26.8 ± 0.4‰) being characteristic of C from a mangrove origin. Conversion of mangroves to shrimp ponds and its degradation by shrimp farm and domestic sewage effluents caused a loss of 97%, 61%, and 35% of soil C stocks in the upper meter, representing potential emissions of ~1200, 800, and 400 Mg CO ha, respectively. These losses were explained by enhanced OM mineralization of unstable fractions driven by the loss of the physico-chemical protection provided by fine-grained soils and vegetation cover. The differences in C stability among sites can be used to predict potential carbon dioxide produced during mineralization, hence aid at prioritizing areas for conservation, restoration or management.
红树林土壤具有较高的有机碳(C)含量,在土地利用变化过程中,其中的 C 很可能容易再矿化。红树林转化为不同的土地利用方式可能会消耗土壤碳储量,导致二氧化碳排放量的变化,但这些排放的程度以及大部分损失的土壤 C (即不稳定或稳定/顽固)部分仍知之甚少。在这里,我们研究了红树林土壤 C 的可降解性及其在红树林受到干扰后的再矿化敏感性。我们测量了整个红树林干扰梯度(即原始森林、接收生活污水和虾养殖场废水的退化红树林、虾养殖场)上土壤特性、有机质(OM)稳定性和 C 库和来源的变化。结果表明,红树林向虾养殖场的转化导致土壤特性、OM 和 C 特征发生了最严重的变化。虾养殖场土壤中 OM-C 库最低,主要由稳定的 OM 组成(即顽固和耐火;总 OM 的 36.0±5.7%),且 δC 富集(-22.6±2.7‰)。相反,对照红树林土壤的 OM-C 库最大,由不稳定的 OM (即不稳定;46.4±4.2%)组成,δC 较轻(-26.8±0.4‰),是红树林来源 C 的特征。红树林向虾养殖场的转化及其被虾养殖场和生活污水的退化,导致上层土壤中土壤 C 储量损失了 97%、61%和 35%,分别代表潜在排放量约为 1200、800 和 400 Mg CO ha。这些损失可以解释为不稳定部分有机质矿化增强,原因是细粒土壤和植被覆盖提供的物理化学保护的丧失。各地点间 C 稳定性的差异可用于预测再矿化过程中产生的潜在二氧化碳量,从而有助于确定优先保护、恢复或管理的区域。