Suppr超能文献

杨树水力和形态特征对水分亏缺的适应性可在模拟干旱期间延缓水力衰竭。

Acclimation of hydraulic and morphological traits to water deficit delays hydraulic failure during simulated drought in poplar.

作者信息

Lemaire Cédric, Blackman Chris J, Cochard Hervé, Menezes-Silva Paulo Eduardo, Torres-Ruiz José M, Herbette Stéphane

机构信息

Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France.

Department of Biology, Goiano Federal Institute of Education, Science and Technology-IF Goiano, Rio Verde, Goiás, Brazil.

出版信息

Tree Physiol. 2021 Nov 8;41(11):2008-2021. doi: 10.1093/treephys/tpab086.

Abstract

The capacity of trees to tolerate and survive increasing drought conditions in situ will depend in part on their ability to acclimate (via phenotypic plasticity) key hydraulic and morphological traits that increase drought tolerance and delay the onset of drought-induced hydraulic failure. However, the effect of water-deficit acclimation in key traits that determine time to hydraulic failure (THF) during extreme drought remains largely untested. We measured key hydraulic and morphological traits in saplings of a hybrid poplar grown under well-watered and water-limited conditions. The time for plants to dry-down to critical levels of water stress (90% loss of stem hydraulic conductance), as well as the relative contribution of drought acclimation in each trait to THF, was simulated using a soil-plant hydraulic model (SurEau). Compared with controls, water-limited plants exhibited significantly lower stem hydraulic vulnerability (P50stem), stomatal conductance and total canopy leaf area (LA). Taken together, adjustments in these and other traits resulted in longer modelled THF in water-limited (160 h) compared with well-watered plants (50 h), representing an increase of more than 200%. Sensitivity analysis revealed that adjustment in P50stem and LA contributed the most to longer THF in water-limited plants. We observed a high degree of trait plasticity in poplar saplings in response to water-deficit growth conditions, with decreases in stem hydraulic vulnerability and leaf area playing a key role in delaying the onset of hydraulic failure during a simulated drought event. These findings suggest that understanding the capacity of plants to acclimate to antecedent growth conditions will enable better predictions of plant survivorship during future drought.

摘要

树木在原地耐受并在日益干旱的条件下存活的能力,部分取决于它们通过表型可塑性使关键水力和形态特征适应环境的能力,这些特征可增强耐旱性并延缓干旱引发的水力故障的发生。然而,在极端干旱期间,水分亏缺适应对决定水力故障发生时间(THF)的关键特征的影响在很大程度上仍未得到检验。我们测量了在水分充足和水分受限条件下生长的杂交杨树幼树的关键水力和形态特征。使用土壤-植物水力模型(SurEau)模拟了植物干燥至临界水分胁迫水平(茎水力导度损失90%)的时间,以及每个特征中干旱适应对THF的相对贡献。与对照相比,水分受限的植物表现出显著更低的茎水力脆弱性(P50stem)、气孔导度和总冠层叶面积(LA)。综合来看,这些和其他特征的调整导致水分受限植物(约160小时)的模拟THF比水分充足的植物(约50小时)更长,增加了200%以上。敏感性分析表明,P50stem和LA的调整对水分受限植物更长的THF贡献最大。我们观察到杨树幼树对水分亏缺生长条件有高度的特征可塑性,茎水力脆弱性和叶面积的降低在模拟干旱事件中对延缓水力故障的发生起关键作用。这些发现表明,了解植物适应先前生长条件的能力将有助于更好地预测未来干旱期间植物的存活率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验