Suppr超能文献

碳含量对LaFeCoO/碳杂化材料合成过程中析氧反应的影响。

Influence of the Amount of Carbon during the Synthesis of LaFeCoO/Carbon Hybrid Material in Oxygen Evolution Reaction.

作者信息

Thomas Jasmine, Kunnathulli Anitha Panayamparambil, Vazhayil Ashalatha, Thomas Nygil

机构信息

Department of Chemistry, Sree Narayana College, Kannur 670007, Kerala, India.

Department of Chemistry, Nirmalagiri College, Kannur 670701, Kerala, India.

出版信息

ACS Omega. 2021 Jul 1;6(27):17566-17575. doi: 10.1021/acsomega.1c02074. eCollection 2021 Jul 13.

Abstract

The oxygen evolution reaction (OER) and the hydrogen evolution reaction occurred at the anode and cathode, which depends on the electronic structure, morphology, electrochemically active surface area, and charge-transfer resistance of the electrocatalyst. Transition metals like cobalt, nickel, and iron have better OER and oxygen reduction reaction activities. At the same time, transition-metal oxide/carbon hybrid has several applications in electrochemical energy conversion reactions. The rich catalytic site of transition metals and the excellent conductivity of carbon material make these materials as a hopeful electrocatalyst in OER. Carbon-incorporated LaFeCoO was prepared by a simple solution combustion method for the development of the best performance of the electrocatalyst. The catalyst can deliver 10 mA/cm current density at an overpotential of 410 mV with better catalytic stability. The introduction of carbon material improves the dispersion ability of the catalyst and the electrical conductivity. The Tafel slope and onset potential of the best catalyst are 49.1 mV/dec and 1.55 V, respectively.

摘要

析氧反应(OER)和析氢反应分别在阳极和阴极发生,这取决于电催化剂的电子结构、形态、电化学活性表面积和电荷转移电阻。钴、镍和铁等过渡金属具有较好的析氧反应和氧还原反应活性。同时,过渡金属氧化物/碳杂化物在电化学能量转换反应中有多种应用。过渡金属丰富的催化位点和碳材料优异的导电性使这些材料成为析氧反应中很有前景的电催化剂。通过简单的溶液燃烧法制备了碳掺杂的LaFeCoO,以开发性能最佳的电催化剂。该催化剂在410 mV的过电位下可提供10 mA/cm²的电流密度,具有较好的催化稳定性。碳材料的引入提高了催化剂的分散能力和电导率。最佳催化剂的塔菲尔斜率和起始电位分别为49.1 mV/dec和1.55 V。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb75/8280668/7c2f37e78c57/ao1c02074_0012.jpg

相似文献

1
Influence of the Amount of Carbon during the Synthesis of LaFeCoO/Carbon Hybrid Material in Oxygen Evolution Reaction.
ACS Omega. 2021 Jul 1;6(27):17566-17575. doi: 10.1021/acsomega.1c02074. eCollection 2021 Jul 13.
2
Sulfate-Decorated Amorphous-Crystalline Cobalt-Iron Oxide Nanosheets to Enhance O-O Coupling in the Oxygen Evolution Reaction.
ACS Nano. 2023 Jan 10;17(1):825-836. doi: 10.1021/acsnano.2c12029. Epub 2022 Dec 23.
5
SmSrCoNiO-A Novel Bifunctional Electrocatalyst for Oxygen Reduction/Evolution Reactions.
Molecules. 2022 Feb 14;27(4):1263. doi: 10.3390/molecules27041263.
6
Nickel oxide nanoparticles dispersed on biomass-derived amorphous carbon/cobalt silicate support accelerate the oxygen evolution reaction.
J Colloid Interface Sci. 2022 Jun 15;616:476-487. doi: 10.1016/j.jcis.2022.02.078. Epub 2022 Feb 22.
7
8
Porous CoS/Nitrogen, Sulfur-Doped Carbon@MoC Dual Catalyst for Efficient Water Splitting.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22291-22302. doi: 10.1021/acsami.8b06166. Epub 2018 Jun 19.
9
Pseudocapacitive Ni-Co-Fe Hydroxides/N-Doped Carbon Nanoplates-Based Electrocatalyst for Efficient Oxygen Evolution.
Small. 2018 Aug;14(34):e1801878. doi: 10.1002/smll.201801878. Epub 2018 Jul 31.
10
MOF derived multi-metal oxides anchored N, P-doped carbon matrix as efficient and durable electrocatalyst for oxygen evolution reaction.
J Colloid Interface Sci. 2021 Jan 1;581(Pt B):608-618. doi: 10.1016/j.jcis.2020.07.117. Epub 2020 Aug 5.

引用本文的文献

1
LaCoFeO (0≤x≤1) spherical nanostructures prepared via ultrasonic approach as photocatalysts.
Ultrason Sonochem. 2021 Dec;80:105824. doi: 10.1016/j.ultsonch.2021.105824. Epub 2021 Nov 8.

本文引用的文献

1
Transition metal nitrides for electrochemical energy applications.
Chem Soc Rev. 2021 Jan 21;50(2):1354-1390. doi: 10.1039/d0cs00415d. Epub 2020 Dec 9.
2
Engineering of the d-Band Center of Perovskite Cobaltite for Enhanced Electrocatalytic Oxygen Evolution.
ChemSusChem. 2020 May 22;13(10):2671-2676. doi: 10.1002/cssc.201903470. Epub 2020 Mar 20.
4
Influence of Fe Substitution into LaCoO Electrocatalysts on Oxygen-Reduction Activity.
ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5682-5686. doi: 10.1021/acsami.8b20780. Epub 2019 Feb 1.
5
Noble-Metal-Free Electrocatalysts for Oxygen Evolution.
Small. 2019 Jan;15(1):e1804201. doi: 10.1002/smll.201804201. Epub 2018 Nov 19.
6
Vibronic Superexchange in Double Perovskite Electrocatalyst for Efficient Electrocatalytic Oxygen Evolution.
J Am Chem Soc. 2018 Sep 12;140(36):11165-11169. doi: 10.1021/jacs.8b06108. Epub 2018 Aug 28.
7
Systematic Study of Oxygen Evolution Activity and Stability on LaSr FeO Perovskite Electrocatalysts in Alkaline Media.
ACS Appl Mater Interfaces. 2018 Apr 11;10(14):11715-11721. doi: 10.1021/acsami.8b00682. Epub 2018 Mar 29.
8
Electronic Origin and Kinetic Feasibility of the Lattice Oxygen Participation During the Oxygen Evolution Reaction on Perovskites.
J Phys Chem Lett. 2018 Apr 5;9(7):1473-1479. doi: 10.1021/acs.jpclett.8b00154. Epub 2018 Mar 9.
9
Cobalt-Doped Perovskite-Type Oxide LaMnO as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries.
Chem Asian J. 2018 Mar 2;13(5):528-535. doi: 10.1002/asia.201701561. Epub 2018 Feb 8.
10
Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles.
Adv Mater. 2018 Feb;30(5). doi: 10.1002/adma.201704609. Epub 2017 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验